K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2019

\(A=4+4^2+4^3+...+4^{23}+4^{24}=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{23}+4^{24}\right)\)

     \(=\left(4+4^2\right)+4^2\left(4+4^2\right)+...+4^{22}\left(4+4^2\right)=\left(4+4^2\right)\left(4^2+...+4^{22}\right)\)

       \(=20\left(4^2+...+4^{22}\right)\)maf \(\left(4^2+...+4^{22}\right)>0\Rightarrow20\left(4^2+...+4^{22}\right)⋮20\Rightarrow A⋮20\)

Tuowng Tuwj nhes

29 tháng 11 2019

\(A=4+4^2+4^3+...+4^{23}+4^{24}=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+...+\left(4^{22}+4^{23}+4^4\right)\)

   \(=\left(4+4^2+4^3\right)+4^3\left(4+4^2+4^3\right)+...+4^{21}\left(4+4^2+4^3\right)\)

   \(=84+4^3.84+...+4^{21}.84=84\left(1+4^3+...+4^{21}\right)\)      

                      \(84⋮21;1+4^3+...+4^{21}\ne0\Rightarrow A⋮21\)

\(A=4+4^2+4^3+...+4^{23}+4^{24}\)

\(=\left(4+4^2+4^3+4^4+4^5+4^6\right)+...+\left(4^{19}+4^{20}+4^{21}+4^{22}+4^{23}+4^{24}\right)\)

\(=\left(4+4^2+4^3+4^4+4^5+4^6\right)+...+4^{18}\left(4+4^2+4^3+4^4+4^5+4^6\right)\)

\(=5460+...+4^{18}.5460=5460\left(1+...+4^{18}\right)\)

                         \(5460⋮420;1+...+4^{18}\ne0\Rightarrow A⋮420\)

18 tháng 12 2021

Đề sai rồi bạn

31 tháng 12 2022

A=(4+4^2)+...+4^22(4+4^2)

=20(1+...+4^22) chia hết cho 20

A=4(1+4+4^2)+...+4^22(1+4+4^2)

=21(4+...+4^22) chia hết cho 21

Vì A chia hết cho 20 và 21

và ƯCLN(20;21)=1

nên A chia hết cho 20*21=420

AH
Akai Haruma
Giáo viên
2 tháng 1

Lời giải:
$A=(4+4^2)+(4^3+4^4)+...+(4^{23}+4^{24})$

$=(4+4^2)+4^2(4+4^2)+...+4^{22}(4+4^2)$

$=(4+4^2)(1+4^2+....+4^{22})=20(1+4^2+...+4^{22})\vdots 20$

----------------------

$A=(4+4^2+4^3)+(4^4+4^5+4^6)+....+(4^{22}+4^{23}+4^{24})$

$=4(1+4+4^2)+4^4(1+4+4^2)+....+4^{22}(1+4+4^2)$

$=(1+4+4^2)(4+4^4+....+4^{22})=21(4+4^4+...+4^{22})\vdots 21$
--------------------------

Vậy $A\vdots 20; A\vdots 21$. Mà $(20,21)=1$ nên $A\vdots (20.21)$ hay $A\vdots 420$

30 tháng 12 2022

Bài 2:

3S=3^2+3^3+...+3^2022

=>2S=3^2022-3

=>2S+3=3^2022 là số chính phương(ĐPCM)

30 tháng 12 2022

TK :

bài 1

út gọn thừa số chung

Đơn giản biểu thức

Giải phương trình

Rút gọn thừa số chung

Đơn giản biểu thức

Rút gọn thừa số chung

Đơn giản biểu thức

mik chỉ bt làm câu 1 thôi  
18 tháng 12 2021

\(A=4\left(1+4+4^2\right)+...+4^{22}\left(1+4+4^2\right)\)

\(=20\left(1+...+4^{22}\right)⋮20\)

 

23 tháng 10 2022

Chứng minh 21 chia hết cho A

A= 4+4^2+4^3+...+4^60

 

25 tháng 12 2022

Ta có:

A = 4 + 42 + 43 +......+ 423+ 424 

= (4 + 42)) + (43 +44)......+ (423+ 424)

=(4 + 42).1+(4 + 42).42+...+(4 + 42).422

=20.(1+42+...+422) chia hết cho 20

Ta lại có:

 A = 4 + 42 + 43 +......+ 423+ 424

=(4 + 42 + 43)+...+(422+423+424)

=(4 + 42 + 43).1+...+(4 + 42 + 43​).421

=21.(1+...+421) chia hết cho 21

Vì A chia hết cho 21 và 20 , mà ƯCLN(20;21)=1 => A ⋮ 20 và 21 tức là A ⋮ 20.21=420

Vậy...

25 tháng 12 2022

thanh kiu bạn nhìuyeu

7 tháng 1

viết dấu + cho nhanh, bạn!

7 tháng 1

A = 1 + 4 + 42 + 43 + ... + 42021

A = 40 + 41 + 42 + 43 +...+ 42021

Xét dãy số 0; 1; 2; 3;...; 2021

Dãy số trên có số số hạng là:

(2021 - 0) : 1 + 1 = 2022

Vậy A có 2022 số hạng

vì 2022 : 3 = 674

Vậy ta nhóm 3 số hạng liên tiếp của A thành một nhóm thì khi đó

A = (1 + 4 + 42) + (43 + 44 + 45) +...+ (42019 + 42020 + 42021)

A = (1 + 4 + 16) + 43.(1 + 4 + 42) + ... +42019.(1 + 4 + 42)

A = 21 + 43.21 +... + 42019.21

A = 21.(1 + 43 + ... + 42019

21 ⋮ 21 ⇒ 21.(1 + 43 + ...+ 42019) ⋮ 21 ⇒ A ⋮ 21 (đpcm)

22 tháng 10 2023

a) P = 1 + 3 + 3² + ... + 3¹⁰¹

= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)

= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)

= 13 + 3³.13 + ... + 3⁹⁹.13

= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13

Vậy P ⋮ 13

b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰

= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)

= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)

= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21

= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21

Vậy B ⋮ 21

c) A = 2 + 2² + 2³ + ... + 2²⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + ... + 2¹⁶.30

= 30.(1 + 2⁴ + ... + 2¹⁶)

= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5

Vậy A ⋮ 5

d) A = 1 + 4 + 4² + ... + 4⁹⁸

= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)

= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)

= 21 + 4³.21 + ... + 4⁹⁷.21

= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21

Vậy A ⋮ 21

e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1

= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)

= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105

= 11⁵.16105 + 16105

= 16105.(11⁵ + 1)

= 5.3221.(11⁵ + 1) ⋮ 5

Vậy A ⋮ 5