K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2019

Hình bạn tự vẽ nha!

a) Xét 2 \(\Delta\) \(ABM\)\(ACM\) có:

\(AB=AC\left(gt\right)\)

\(\widehat{BAM}=\widehat{CAM}\) (vì \(AM\) là tia phân giác của \(\widehat{A}\))

Cạnh AM chung

=> \(\Delta ABM=\Delta ACM\left(c-g-c\right).\)

=> \(BM=CM\) (2 cạnh tương ứng).

b) Xét 2 \(\Delta\) \(ABI\)\(ACI\) có:

\(AB=AC\left(gt\right)\)

\(\widehat{BAI}=\widehat{CAI}\) (vì \(AI\) là tia phân giác của \(\widehat{A}\))

Cạnh AI chung

=> \(\Delta ABI=\Delta ACI\left(c-g-c\right)\)

=> \(\widehat{AIB}=\widehat{AIC}\) (2 góc tương ứng).

Ta có: \(\widehat{AIB}+\widehat{AIC}=180^0\) (vì 2 góc kề bù).

\(\widehat{AIB}=\widehat{AIC}\left(cmt\right)\)

=> \(2.\widehat{AIB}=180^0\)

=> \(\widehat{AIB}=180^0:2\)

=> \(\widehat{AIB}=90^0.\)

=> \(\widehat{AIB}=\widehat{AIC}=90^0\)

=> \(AI\perp BC.\)

\(A'H\perp BC\left(gt\right)\)

=> \(AI\) // \(A'H\) (từ vuông góc đến song song).

=> \(\widehat{BA'H}=\widehat{BAI}\) (vì 2 góc đồng vị)

\(AI\) là tia phân giác của \(\widehat{A}\left(gt\right)\)

=> \(\widehat{BAI}=\frac{1}{2}\widehat{A}\)

Hay \(\widehat{A}=2.\widehat{BAI}\)

\(\widehat{BAI}=\widehat{BA'H}\left(cmt\right).\)

=> \(\widehat{A}=2.\widehat{BA'H}\left(đpcm\right).\)

Chúc bạn học tốt!

21 tháng 3 2022

C

Bài 1: 

a: Xét ΔABC có \(AC^2=AB^2+BC^2\)

nên ΔABC vuông tại B

b: XétΔABC có BC<AB<AC

nên \(\widehat{A}< \widehat{C}< \widehat{B}\)

6 tháng 7 2023

1

\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)

Theo pytago xét tam giác ABC vuông tại A có:

\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)

Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:

\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)

2

\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)

Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:

\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)

\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)

3

`BC=HB+HC=36+64=100`

Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):

\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)

\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)

21 tháng 12 2021

bài 2:

ta có: AB<AC<BC(Vì 3cm<4cm<5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

15 tháng 2 2022

bài 2:

ta có: AB <AC <BC (Vì 3cm <4cm <5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

HT mik làm giống bạn Dương Mạnh Quyết

a: Xét ΔADC vuông tại A và ΔADI vuông tại A có

AD chung

AC=AI

=>ΔADC=ΔADI

b: Xét ΔBCI có

BA là đườg cao, là trung tuyến

=>ΔBCI cân tại B

c: \(CD=\sqrt{8^2+3^2}=\sqrt{73}\left(cm\right)\)

=>\(CG=\dfrac{2}{3}\sqrt{73}\left(cm\right)\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔACB vuông tại A có AH vuông góc BC

nên HA^2=HB*HC

c: \(CB=\sqrt{16^2+12^2}=20\left(cm\right)\)

BH=16^2/20=256/20=12,8cm

10 tháng 5 2023

Sai r