K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 5 2020

\(90^0< a< 180^0\Rightarrow cosa< 0\)

\(\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{\sqrt{5}}{3}\)

\(sin2a=2sina.cosa=-\frac{4\sqrt{5}}{9}\)

\(sin\left(a+30^0\right)=sina.cos30^0+cosa.sin30^0=\frac{2}{3}.\frac{\sqrt{3}}{2}-\frac{\sqrt{5}}{3}.\frac{1}{2}=\frac{\sqrt{3}}{3}-\frac{\sqrt{5}}{6}\)

18 tháng 7 2022

a) Ta có A=\dfrac{\tan \alpha+3 \dfrac{1}{\tan \alpha}}{\tan \alpha+\dfrac{1}{\tan \alpha}}=\dfrac{\tan ^{2} \alpha+3}{\tan ^{2} \alpha+1}=\dfrac{\dfrac{1}{\cos ^{2} \alpha}+2}{\dfrac{1}{\cos ^{2} \alpha}}=1+2 \cos ^{2} \alpha Suy ra A=1+2 \cdot \dfrac{9}{16}=\dfrac{17}{8}.

b) B=\dfrac{\dfrac{\sin \alpha}{\cos ^{3} \alpha}-\dfrac{\cos \alpha}{\cos ^{3} \alpha}}{\dfrac{\sin ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{3 \cos ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{2 \sin \alpha}{\cos ^{3} \alpha}}=\dfrac{\tan \alpha\left(\tan ^{2} \alpha+1\right)-\left(\tan ^{2} \alpha+1\right)}{\tan ^{3} \alpha+3+2 \tan \alpha\left(\tan ^{2} \alpha+1\right)}.

Suy ra B=\dfrac{\sqrt{2}(2+1)-(2+1)}{2 \sqrt{2}+3+2 \sqrt{2}(2+1)}=\dfrac{3(\sqrt{2}-1)}{3+8 \sqrt{2}}.

a, ta có \(\cos^2\alpha\)+  \(\sin^2\alpha\)= 1

                  1/5 + \(\cos^2\alpha\)= 1

                               \(\cos^2\alpha\)= 4/5

\(4\cos^2\alpha\)+6 \(\sin^2\alpha\)= 4 . 4/5 + 6.1/5=22/5

b, \(\sin\alpha\)= 2/3 

\(\sin^2\alpha\)= 4/9

\(\cos^2\alpha=\frac{5}{9}\)

\(5\cos^2\alpha+2\sin^2=\frac{5.5}{9}+\frac{2.4}{9}=\frac{33}{9}\)

#mã mã#

3 tháng 5 2021

b) \(\sin x+\cos x=\dfrac{3}{2}\)

\(\left(\sin x+\cos x\right)^2=\dfrac{1}{4}\)

\(\sin^2x+\cos^2x+2\sin x\cos x=\dfrac{1}{4}\)

\(2\sin x\cos x=-\dfrac{3}{4}=\sin2x\)

3 tháng 5 2021

ý a,

undefined

25 tháng 6 2019

a/ Có \(\sin^2\alpha+\cos^2\alpha=1\Rightarrow\cos^2\alpha=\frac{4}{5}\)

\(\Rightarrow4\cos^2\alpha-6\sin^2\alpha=4.\frac{4}{5}-6.\frac{1}{5}=\frac{7}{5}\)

b/ làm tương tự nhưng thay \(\sin^2\alpha=\frac{4}{9}\)

NV
27 tháng 11 2019

Do \(90< a< 180\Rightarrow cosa< 0\Rightarrow tana< 0\Rightarrow\) đề bài sai do tana không thể bằng 3

Nhưng kệ cứ tính thì:

Chia cả tử và mẫu của A cho \(cos^3a\) và lưu ý \(\frac{1}{cos^2a}=1+tan^2a\)

\(A=\frac{tana.\frac{1}{cos^2a}+tan^2a+1}{tan^3a-tana-1}=\frac{tana\left(1+tan^2a\right)+tan^2a+1}{tan^3a-tana-1}\)

Tới đây thay số vào và bấm máy là xong

NV
14 tháng 10 2020

\(\frac{sin^2a-cos^2a+cos^4a}{cos^2a-sin^2a+sin^4a}=\frac{sin^2a-cos^2a\left(1-cos^2a\right)}{cos^2a-sin^2a\left(1-sin^2a\right)}=\frac{sin^2a-cos^2a.sin^2a}{cos^2a-sin^2a.cos^2a}\)

\(=\frac{sin^2a\left(1-cos^2a\right)}{cos^2a\left(1-sin^2a\right)}=\frac{sin^2a.sin^2a}{cos^2a.cos^2a}=tan^4a\)

\(sin^4a+cos^4a=\left(sin^2a+cos^2a\right)^2-sin^2a.cos^2a=1-2sin^2a.cos^2a\)