Tìm số tự nhiên a biết a chia cho 6 dư 2,a chia 9 dư 5 và a chia cho 13 dư 9 biết rằng với a là số tự nhiên có 3 chữ số
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CM
23 tháng 12 2017
Gọi số cần tìm là a thì a+8 ∈ BC(11;13) và a là số nhỏ nhất thỏa mãn 100≤a≤999
Ta có BCNN(11;13) = 11.13 = 143
BC(11;13) ∈ {0;143;286;...}
Vì a là số tự nhiên có ba chữ số nhỏ nhất nên a+8 = 143
a = 135
Vậy số cần tìm là 135
3 tháng 7 2015
Bài 2 :
Gọi số cần tìm là a. Ta có
a + 6 chia hết cho 11 suy ra ( a+6) +77 chia hết cho 11 (1)
a+ 5 chia hết chỏ suy ra ( a+5) +78 chia hết cho 13 suy ra a+ 83 chia hết cho 13 (2)
a +83 chia hết cho 143
Từ (1) và (2) => a = 143k -83 ( k \(\in\) N* )
để được a nhỏ nhất có 3 chữ số ta chọn k = 2, được a = 203
Vậy số cần tìm là 203.
Có:
+) a chia 6 dư 2 => a - 2 chia hết cho 6 => ( a - 2 + 6 ) chia hết cho 6 => a +4 chia hết cho 6
+) a chia 9 dư 5 => a - 5 chia hết cho 9 => ( a - 5 + 9 ) chia hết cho 9 => a +4 chia hết cho 9
+) a chia 13 dư 9 => a -9 chia hết cho 13 => ( a - 9 + 13 ) chia hết cho 13 => a +4 chia hết cho 13
=> a +4 thuộc BC ( 6; 9 ; 13)
Có:
\(BCNN\left(6;9;13\right)=234\)
=> \(a+4\in\left\{0;234;468;702;936;1170;....\right\}\)mà a là số tự nhiên có 3 chữ số
=> \(a\in\left\{230;464;698;934\right\}\)
ggr fge