Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với...
Đọc tiếp
Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.
Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. Cmr I là trung điểm của DE.
Bài 3:Cho tam giác ABC đều. Gọi M, N là các điểm trên AB, BC sao cho BM=BN. Gọi G là trọng tâm của tam giác BMN. I là trung điểm của AN, P là trung điểm của MN.Cmr:
a, tam giác GPI và tam giác GNC đồng dạng.
b, IC vuông góc với GI.
Bài 4:Cho tam giác ABC vuông tại A, đường cao AH. I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng bờ là đường thẳng chứa AC, vẽ Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH, AE với BI theo thứ tự G và K. Cmr:
a,Tam giác IHE và tam giác BHA đồng dạng.
b, Tam giác BHI và tam giác AHE đồng dạng.
c, AE vuông góc với BI.
LÀM ƠN HÃY GIÚP MÌNH NHA. MÌNH ĐANG RẤT VỘI. THANK KIU CÁC BẠN!!!😘😘😘
Nguyễn Tất Đạt: alo ông eiii
Gọi EN giao FM tại K, AP cắt BC tại V, AK cắt BC tại U. Giao điểm của EF với AK và AP lần lượt là L và I.
Áp dụng ĐL Thales ta dễ có \(\frac{FL}{AM}=\frac{KF}{KM}=\frac{EF}{MN}=\frac{EI}{AM}\Rightarrow FL=EI\). Từ đây BU = CV
Suy ra hai điểm U,V đối xứng với nhau qua trung điểm T của cạnh BC (1)
Mặt khác gọi S là chân đường cao xuất phát từ A của tam giác ABC. KJ vuông góc AH tại J, AH cắt EF tại G.
Ta thấy ^KJH = ^KEH = ^KFH = 900 nên năm điểm E,F,K,H,J đồng viên
Từ đó \(GE.GF=GH.GJ\Rightarrow\frac{1}{4}SB.SC=\frac{1}{4}SH.SA=GH.GJ\)
Hay \(d_{\left(O,EF\right)}.AG=GH.d_{\left(K,EF\right)}\Rightarrow\frac{d_{\left(O,EF\right)}}{d_{\left(K,EF\right)}}=\frac{GH}{AG}\). Từ đó dễ suy ra L,O,H thẳng hàng
Gọi cát tuyến LOH cắt BC tại V'. Ta lại có CF và OH cắt nhau tại trọng tâm tam giác ABC nên theo ĐL Thales:
\(CV'=2.FL=BU\). Suy ra hai điểm U và V' đối xứng nhau qua trung điểm cạnh BC (2)
Từ (1) và (2) suy ra V trùng V'. Mà AP cắt BC tại V, OH (Đường Euler của tam giác ABC) cắt BC tại V'
Nên OH,AP,BC đồng quy (đpcm).