1Cách vẽ đường trung trực của 1 đoạn thẳng 2 Chứng minh 2 đường thẳng song song 3 Vận dụng tính chất 2 đường thẳng song song để tính số đo 1 góc Giúp mik với, mai lớp mik kt15p toán hình nên mong kết quả đúng cảm ơn mn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Qua một điểm ở ngoài đường thẳng chỉ có một đường thẳng song song với đường thẳng đó
Câu 2:
GT: a // c, b\(\perp\)a
KL: c\(\perp\)b
Câu 3:
Góc x'Oy' đối đỉnh với góc xOy nên cũng có số đo là 100o
Câu 4: Đường trung trực của đoạn thẳng là 1 đường thẳng vuông góc với đoạn thẳng và đi qua trung điểm của đoạn thẳng đó
Câu 5: Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì chúng song song vói nhau
GT: a, b // c
KL: a // b // c
Học tốt!!!
Bài 1:
GT | a\(\perp\)b;b\(\perp\)c |
KL | a//c |
Ta có: a\(\perp\)b
b\(\perp\)c
Do đó: a//c(Định lí 1 từ vuông góc tới song song)
Bài 2:
GT | a\(\perp\)b;b//c |
KL | a\(\perp\)c |
Ta có: b//c
a\(\perp\)b
Do đó: a\(\perp\)c
1) Đường thẳng vuông góc với một đoạn thẳng tại trung điểm của nó được gọi là
" đường trung trực " của đoạn thẳng ấy .
2) Hai góc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối của một cạnh của
góc kia .
3) Nếu một đường thẳng cắt hai đường thẳng song song thì :
a) Hai góc so le trong bằng nhau
b) Hai góc đồng vị bằng nhau
c) Hai góc trong cùng phía bù nhau
1) Đường thẳng vuông góc với một đoạn thẳng tại trung điểm của nó được gọi là "đường trung trực" của đoạn thẳng ấy .
2) Hai góc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối của một cạnh của góc kia .
3) Nếu một đường thẳng cắt hai đường thẳng song song thì :
a) Hai góc so le trong bằng nhau
b) Hai góc đồng vị bằng nhau
c) Hai góc trong cùng phía bù nhau
Câu 1:
Hai góc đối đỉnh là hai góc có chung đỉnh, và hai tia của góc này là hai tia đối của hai tia của góc kia
Tính chất: Hai góc đối đỉnh thì bằng nhau
Câu 1 :- định nghĩa : 2 góc đối đỉnh là 2 góc mà là mỗi cạnh của góc này là tia đối của một cạnh của góc kia
- tính chất : 2 góc đối đỉnh thì bằng nha
a)
Áp dụng định lí tổng ba góc trong một tam giác bằng 180 độ
Xét trong tam giác ABC. Ta có:
\(\widehat{ABC}+\widehat{BAC}+\widehat{ACB}=180^o\)
\(\widehat{ABC}+3.\widehat{ABC}+2.\widehat{ABC}=180^o\)
=> \(6.\widehat{ABC}=180^o\Rightarrow\widehat{ABC}=30^o\Rightarrow\widehat{BAC}=120^o\Rightarrow\widehat{ACB}=60^o\)
b)
MK//CB => \(\widehat{MKB}=\widehat{CBA}\)(1)
AC//BM => \(\widehat{CBM}=\widehat{ACB}=60^o\Rightarrow\widehat{ABM}=\widehat{ABC}+\widehat{CBM}=30^o+60^o=90^o\)
=> \(AB\perp BM\)=> AB//CM => \(\widehat{MCB}=\widehat{CBA}\)(2)
=> \(\widehat{MCB}=\widehat{MKB}\)
b) Ta có : KB vuông góc với BM
lấy E đối xứng với M qua B
=> K B là đường trung trực của ME
Để chứng minh AE=AM
Xét hai tam giác ABM và ABE bằng nhau theo truowngf hợp c-g-c
1:
Cách vẽ: Vẽ một đường thẳng vuông góc với một đọan thẳng cho trước tại trung điểm của đoạn thẳng đó