K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2019

Ta có:

+) f(x) : (x+2) dư 3

=> Tồn tại đa thức g(x) sao cho:  \(f\left(x\right)=\left(x+2\right).g\left(x\right)+3\)(1)

+) f(x) : x2 +2 dư 3x + 1.

=> Tồn tại đa thức h(x) sao cho: \(f\left(x\right)=\left(x^2+2\right).g\left(x\right)+3x+1\)(2)

+) Vì (x + 2)(x^2 + 2) có bậc là 3 => \(f\left(x\right):\left(x+2\right)\left(x^2+2\right)\) có dư là đa thức có bậc là 2 

Giả sự số dư là: \(ax^2+bx+c\)

=> Tồn tại đa thức k(x) sao cho: \(f\left(x\right)=\left(x^2+2\right)\left(x+2\right).k\left(x\right)+ax^2+bx+c\)

Có: \(f\left(x\right)=\left(x^2+2\right)\left(x+2\right).k\left(x\right)+a\left(x^2+2\right)+bx+c-2a\)

\(=\left(x^2+2\right)\left[\left(x+2\right).k\left(x\right)+a\right]+bx+c-2a\)(3)

Từ (2), (3) => \(bx+c-2a=3x+1\)=> \(\hept{\begin{cases}b=3\\c-2a=1\end{cases}}\)(4)

Có: \(f\left(x\right)=\left(x^2+2\right)\left(x+2\right).k\left(x\right)+\left(x+2\right).\left(ax+b-2a\right)+c+4a-2b\)

\(=\left(x+2\right)\left(\left(x^2+2\right).k\left(x\right)+\left(ax+b-2a\right)\right)+c+4a-2b\)(5)

Từ (1) và (5) => \(c+4a-2b=3\) (6)

Từ (4) và (6) => c = 11/3; a =4/3 ; b =3

Vậy số dư là: \(\frac{4}{3}x^2+3x+\frac{11}{3}\)

20 tháng 9 2017

Từ giả thiết ta có thể viết \(f\left(x\right)=g\left(x\right)\left(x+1\right)+5\)    (1) 

Và \(f\left(x\right)=h\left(x\right)\left(x-2\right)+7\)   (2) 

Do (x + 1)(x - 2) là đa thức bậc 2 nên số dư là đa thức bậc 1. Tức là:

\(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+ax+b\)    (Với g(x) , h(x), t(x) là các đa thức)

Ta có \(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+a\left(x+1\right)+b-a=\left(x+1\right)\left[\left(x-2\right)t\left(x\right)+a\right]+b-a\)

Theo (1) thì b - a = 5.

Ta cũng có :

\(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+a\left(x-2\right)+b+2a=\left(x-2\right)\left[\left(x+1\right)t\left(x\right)+a\right]+b+2a\)

Theo (2) thì b + 2a = 7.

Từ đó ta tìm được \(a=\frac{2}{3};b=\frac{17}{3}\)

7 tháng 2 2018

Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo bài tương tự tại đây nhé.

23 tháng 8 2023

Để tìm dư của phép chia đa thức f(x) cho (x^2 + 1)(x - 2), chúng ta cần sử dụng định lý dư của đa thức. Theo định lý dư của đa thức, nếu chia đa thức f(x) cho đa thức g(x) và được dư đa thức r(x), thì ta có: f(x) = q(x) * g(x) + r(x) Trong trường hợp này, chúng ta biết rằng f(x) chia cho x - 2 dư 7 và chia cho x^2 + 1 dư 3x + 5. Vì vậy, chúng ta có các phương trình sau: f(x) = q(x) * (x - 2) + 7 f(x) = p(x) * (x^2 + 1) + (3x + 5) Để tìm dư của phép chia f(x) cho (x^2 + 1)(x - 2), ta cần tìm giá trị của r(x). Để làm điều này, chúng ta cần giải hệ phương trình trên. Đầu tiên, chúng ta sẽ giải phương trình f(x) = q(x) * (x - 2) + 7 để tìm giá trị của q(x). Sau đó, chúng ta sẽ thay giá trị của q(x) vào phương trình f(x) = p(x) * (x^2 + 1) + (3x + 5) để tìm giá trị của p(x) và r(x). Nhưng trước tiên, chúng ta cần biết đa thức f(x) là gì. Bạn có thể cung cấp thông tin về đa thức f(x) không?

6 tháng 7 2018

GỌI THƯƠNG CỦA PHÉP CHIA f(x) cho (x-2)    và (x+5) lần lượt là p(x) và Q(x)

theo bài ra ta có 

\(\hept{\begin{cases}f._x=\left(x-2\right).p._{\left(x\right)}+1............\left(1\right)\\f._{\left(x\right)}=\left(x+5\right).Q._{\left(x\right)}+8.......\left(2\right)\end{cases}}\)

GỌI THƯƠNG CỦA PHÉP CHIA f(x) cho (x-2)(x+5)  [ là x^2+3x-10  phân tích thành]              =2x là g(x) và số dư là  nhị thức bậc nhất là ax+b

ta có,            \(f._{\left(x\right)}=\left(x-2\right)\left(x+5\right).g._{\left(x\right)}+ax+b....................\left(3\right)\)

TỪ (1) VÀ (3) TA CÓ X=2 THÌ                    \(\hept{\begin{cases}f._2=1\\f_2=2a+b\end{cases}}\)        

=>         2a+b=1    =>b=1-2a                (4)

TỪ (2) VÀ (3) TA CÓ X=-5   THÌ                     \(\hept{\begin{cases}f_{\left(-5\right)}=8\\f_{\left(-5\right)}=-5a+b\end{cases}}\)

=>        8=-5a+b  =>b=8+5a                 (5)

TỪ (4) VÀ (5) =>1-2a=8+5a    <=> a=-1

                                                => b=3

vậy số dư là   -x+3

vậy đa thức f(x) =(x-2)(x+5) .2x+(-x+3)=\(2x^3+6x^2-21x+3\)