cho A = 1/5 + 2/52 + 3/53 + ..........+10/510 + 11/511 . chứng minh A < 5/16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài a:
1.3.5......199 = 1.2.3.4......199.200/2.4.6.....200
= 1.2.3.4.........199.200/1.2.3.4....100.2100
=101.102.....200/2.2......2.2
=101/2 . 102/2 . 103/2 . ..... . 200/2
a,1/51 > 1/100
1/52 > 1/100
1/53 > 1/100
...
1/100=1/100
=>H>1/100 + 1/100 + 1/100 +...+1/100
H>50/100=1/2
1/51<1/50
1/52<1/50
....
1/100<1/50
=>H<1/50+1/50+...+1/50
H<50/50=1
Vay1/2<H<1
\(A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{11}{5^{11}}\Rightarrow5A=1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{11}{5^{10}}\)
\(\Rightarrow4A=5A-A=1+\left(\frac{1}{5}+\frac{1}{5^2}+\frac{...1}{5^{10}}\right)-\frac{11}{5^{11}}\)
\(< 1+\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\right)< 1+\frac{1}{4}=\frac{5}{4}\)
\(\Rightarrow A< \frac{5}{4}:4=\frac{5}{16}\)
Lưu ý : \(M=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\Rightarrow5M=1+\frac{1}{5}+...+\frac{1}{5^9}\Rightarrow4M=5M-M=1-\frac{1}{5^{10}}\)
\(\Rightarrow M=\frac{1}{4}-\frac{1}{5^{10}}:4< \frac{1}{4}\)
5A = 1/5 + 2/5^2 +3/5^3 +...+ 11/5^11
=> 4A= 1/5+1/5^2 +1/5^3 +...+1/5^11 - 11/5^12
=> 20A = 1+1/5+1/5^2+...+1/5^10 - 11/5^11
=> 16A = 1-1/5^11+11/5^12-11/5^11
Vì 1-1/5^11 < 1 ; 11/5^12 -11/5^11 < 0
=> 16A < 1
=> A < 1/16
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(\RightarrowĐPCM\)