Cho A=\(\left[1:\left(1-\frac{\sqrt{a}}{1+\sqrt{a}}\right)\right]\left[\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right]\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mi tích tau tau tích mi xong tau trả lời nka
việt nam nói là làm
\(a,\left(1+\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\left(1-\frac{a+\sqrt{a}}{1+\sqrt{a}}\right)=\left(1+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1^2-\sqrt{a}^2=1-a\)
\(b,\left(2-\frac{a-3\sqrt{a}}{\sqrt{a}-3}\right)\left(2-\frac{5\sqrt{a}-\sqrt{ab}}{\sqrt{b}-5}\right)=\left(2-\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}-3}\right)\left(2-\frac{-\sqrt{a}\left(\sqrt{b}-5\right)}{\sqrt{b}-5}\right)\)
\(=\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)=2^2-\sqrt{a}^2=2-a\)
\(c,\left(3+\frac{a-2\sqrt{a}}{\sqrt{a}-2}\right)\left(3-\frac{3a+\sqrt{a}}{3\sqrt{a}+1}\right)=\left(3+\frac{\sqrt{a}\left(\sqrt{a}-2\right)}{\sqrt{a}-2}\right)\left(3-\frac{\sqrt{a}\left(3\sqrt{a}+1\right)}{3\sqrt{a}+1}\right)\)
\(=\left(3+\sqrt{a}\right)\left(3-\sqrt{a}\right)=3^2-\sqrt{a}^2=3-a\)
\(d,\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}+2\right)\left(2-\frac{\sqrt{a}+a}{1+\sqrt{a}}\right)=\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}+2\right)\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)
\(=\left(\sqrt{a}+2\right)\left(2-\sqrt{a}\right)=2^2-\sqrt{a}^2=2-a\)
\(A=\)\(\frac{\sqrt{a}\left(1-a\right)^2}{1+a}:\left[\left(\frac{1-\sqrt{a}^3}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1+\sqrt{a}^3}{1+\sqrt{a}}-\sqrt{a}\right)\right]\)
\(=\frac{\sqrt{a}\left(1-a\right)^2}{1+a}\)\(:\)\(\left[\left(1+\sqrt{a}+a+\sqrt{a}\right)\left(1-\sqrt{a}+a-\sqrt{a}\right)\right]\)
\(=\frac{\sqrt{a}\left(1-a\right)^2}{1+a}:\)\(\left(1+a+2\sqrt{a}\right)\left(1+a-2\sqrt{a}\right)\)
\(=\frac{\sqrt{a}\left(1-a\right)^2}{\left(1+a\right)\left[\left(1+a\right)^2-\left(2\sqrt{a}\right)^2\right]}\)\(=\frac{\sqrt{a}\left(1-a\right)^2}{\left(a+1\right)\left(1+2a+a^2-4a\right)}\)
\(=\frac{\sqrt{a}\left(1-a\right)^2}{\left(a+1\right)\left(1-a\right)^2}=\frac{\sqrt{q}}{a+1}\)
ĐK \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)
Ta có \(P=\frac{\sqrt{a}\left(1-a\right)^2}{1+a}:\left[\left(\frac{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}+\sqrt{a}\right).\left(\frac{\left(1+\sqrt{a}\right)\left(a-\sqrt{a}+1\right)}{1+\sqrt{a}}-\sqrt{a}\right)\right]\)
\(=\frac{\sqrt{a}\left(1-a\right)^2}{1+a}:\left[\left(a+2\sqrt{a}+1\right).\left(a-2\sqrt{a}+1\right)\right]\)
\(=\frac{\sqrt{a}\left(1-a\right)^2}{1+a}.\frac{1}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)^2}=\frac{\sqrt{a}}{1+a}\)
= \(1:\frac{1+\sqrt{a}-\sqrt{a}}{1+\sqrt{a}}.\frac{a+1-2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\)
=\(1:\frac{1}{\sqrt{a}+1}.\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)\left(\sqrt{a}-1\right)}\)
=\(\left(\sqrt{a}+1\right)\frac{1}{\sqrt{a}+1}\)
=\(1\)