Chứng Minh Rằng Với Mọi X Thuộc Z
(n+2)(n+9)+12 không chia hết cho 49
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử A chia hết cho 49 => A chia hết 7 => (n+5)(n-2)+14 chia hết 7 mà 14 chia hết 7=>(n+5)(n-2) chia hết 7 mà 7 là số nguyên tố =>n+5 chia hết 7 hoặc n-2 chia hết cho 7 mà (n+5)-(n-2)=7 =>(n+5)(n-2) chia hết cho 49 mà A chia hết cho 49=>14 chia hết cho 49 (vô lý) => giả sử sai => a ko chia hết cho 49
Chia het cho may thi minh cung ko biet lam vi minh moi lop 5
Lời giải:
Giả sử $n^2+n+9\vdots 49$
$\Rightarrow n^2+n+9\vdots 7$
$\Leftrightarrow n^2+n-7n+9\vdots 7$
$\Leftrightarrow (n-3)^2\vdots 7$
$\Leftrightarrow n-3\vdots 7(*)$
$\Leftrightarrow (n-3)^2\vdots 49$
$\Leftrightarrow n^2-6n+9\vdots 49$
$\Leftrightarrow (n^2+n+9)-7n\vdots 49$
$\Leftrightarrow 7n\vdots 49$ (do $n^2+n+9\vdots 49$ theo giả sử)
$\Leftrightarrow n\vdots 7$ (vô lý theo $(*)$)
Vậy điều giả sử là sai. Tức là $n^2+n+9\not\vdots 49$ với mọi $n$ nguyên.
(n+1)(n+2)+12
=(n+1)*n+(n+1)*2+12
=n2+1n+2n+2+12
=n2+(1+2)n+(2+12)
=n2+3n+14
=n*n+3n+14
=n(n+3)+14
Vì 14 không chia hết cho 9 nên n(n+3) không chia hết cho 9
nên n(n+3)+14 không chia hết cho 9
nên (n+1)(n+2)+12 không chia hết cho 9 với mọi n
Vậy với mọi n thuộc Z thì (n+1)(n+2)+12 không chia hết cho 9
cái này mình làm bậy, ko biết có đúng k
chúc bạn học tốt!^_^
nếu n = 2 => (n+1)(n+2) + 12 = 24 không chia hết cho 9
=> (n+1)(n+2) + 12 không chia hết cho 9 với mọi n