Chứng tỏ rằng : 237+234 chia hết cho 12.
Các bạn giải theo kiểu lớp 6 nha. Thanks các bạn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu n là số lẻ => n+3 là số chẵn => (n+3) (n+6) chia hết cho 2
Nếu n là số chẵn => n+6 là số chẵn => (n+3) (n+6) chia hết cho 2
=> (n+3) (n+6) chia hết cho 2 với mọi STN n
Một lần nữa xin cảm ơn bạn ( le anh tu ) nhiều .
Thank you very very much .
Kết bạn nhé .
THÔI TỰ ĐI MÀ LÀM NHÌN THẤY LÀ ĐÃ GIẬT MÌNH RỒI DÀI DẰNG DẶC AI MÀ LÀM HẾT ĐƯỢC CÁC BẠN NHỈ !
1 /
B = 15 + 17 - 16
B = 16
mà 16 không chia hết cho 12 , nên không cần chứng minh cũng ra
2 /
a ) N = 1 đó
b ) N = 1 đó
cách dễ nhất là cứ cho N = 1 , vì bao nhiêu lần 1 thực hiện phép tính chia thì chắng chia hết cho 1
còn lại tương tự nhé !
mình còn làm violympic nữa
Bài 1
Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2. Tổng của chúng là
n+n+1+n+2=3n+3=3(n+1) chia hết cho 3
Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3. Tổng của chúng là
n+n+1+n+2+n+3=4n+6=4n+4+2=4(n+1)+2 chia cho 4 dư 2
Bài 2
(Xét tính chẵn hoặc lẻ của n)
+ Nếu n lẻ thì n+3 chẵn; n+6 lẻ => (n+3)(n+6) chẵn => chia hết cho 2
+ Nếu n chẵn thì n+3 lẻ, n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2
=> (n+3)(n+6) chia hết cho 2 với mọi n
Đặt tích 3 số tự nhiên liên tiếp là T = a * (a + 1) * (a + 2)
-Chứng minh T chia hết cho 2: Chỉ có 2 trường hợp
+Nếu a chia hết cho 2 (a chẵn) => T chia hết cho 2
+Nếu a chia 2 dư 1 (a lẻ) => a + 1 chia hết cho 2 => T chia hết cho 2
-Chứng minh T chia hết cho 3: Có 3 trường hợp
+Nếu a chia hết cho 3 => T chia hết cho 3
+Nếu a chia 3 dư 1 => a + 2 chia hết cho 3 => T chia hết cho 3
+Nếu a chia 3 dư 2 => a + 1 chia hết cho 3 => T chia hết cho 3
2 và 3 nguyên tố cùng nhau
=> T chia hết cho 2.3 = 6
Ta có A= \(2+2^2+2^3+....+2^{21}\)
=> A= \(2+2^2\left(2^3+2^4\right)+2^5\left(2^3+2^4\right)+......+2^{18}\left(2^3+2^4\right)+2^{21}\)
=> A=\(2+2^2.14+2^5.14+.....+2^{18}.14+2^{21}\)
Vì trong A có thừa số 14 nên A chia hết cho 14
A=(2+22+23)+(24+25+26)+...+(219+220+221)=14+23(2+22+23)+...+218(2+22+23)
A=14+23.14+...+218.14=14(1+23+26+...+215+218) chia hết cho 14
Giả sử số thứ nhất chia 5 dư 1 thì số thứ năm chia năm dư 5
Hay số thứ năm chia hết cho 5
Tiếp tục giả sử với các trường hợp số thứ hai, ba,... chia năm dư 1
Ta cũng thu được trong 5 số ấy luôn có 1 số chia hết cho 5
Do đó tích của 5 số tự nhiên liên tiếp luôn chia hết cho 5
Vậy tích của 5 số tự nhiên liên tiếp luôn chia hết cho 5
Ta có:12=3.4
Gọi số đó là xxy
Vì xxy chia hết cho 12
=>xxy chia hết cho 3
=>x+x+y chia hết cho 3
=>2x+y chia hết cho 3 (1)
Lại có vì xxy chia hết cho 12
=>xxy chia hết cho 4
=>xy chia hết cho 4
=>10x+y chia hết cho 4
=>10x chia hết cho 4 hoặc y chia hết cho 4
=>x chia hết cho 4
=>2x chia hết cho 4
=>2x+y chia hết cho 4 hay x+x+y chia hết cho 4 (2)
Từ (1) và (2) =>x+x+y chia hết cho 3.4=12
x+x.x+1 ko chia het cho 20
x.(1+x)+1 ko chia het cho 20
vi 1 ko chia het cho 20\(\Rightarrow\)x.(1+x) chia het cho 20
x\(\in\)U(20)
roi ban tu ly luan...
ket luan x=20
abcabc = abc.1001= abc.77.13 chia hết cho 13
=> số có dạng abcabc luôn chia hết cho 13
Ta có:abcabc=abc*77*13
=>abcabc chia hết cho 13
Vậy số có dạng abcabc luôn chia hết cho 13
\(=2^{34}\left(2^3+1\right)=\left(2^2\right)^{17}.9=4^{17}.3^2\)
Biểu thức trên chia hết cho 12 khi đồng thời chia hết cho cả 3 và 4
Ta thấy 417 chia hết cho 4 và 32 chia hết cho 3 => biểu thức trên đồng thời chia hết cho 3 và 4 nên nó chia hết cho 12
Thanks bn nhiều nhiều :3