Có tồn tại hay không 1 dãy gồm 50 số sao cho 17 số liên tiếp nào cũng có tổng lớn hơn 0, còn tổng của bất kì 10 số liên tiếp nào cũng đều bé hơn 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử tồn tại 50 số thảo mãn đề bài
Gọi các số đó lần lượt là a1, a2, a3, a4, ... a50
Theo bài ra ta có:
a1 + a2 + a3 + ... + a10 < 0 (1)
a11 + a12 + ... + a20 < 0
=> a1 + a2 + ... + a20 < 0
Mà a1 + a2 + ... + a17 > 0 (theo đề bài)
=> a18 + a19 + a20 < 0
Mà a11 + a12 + ... + a20 < 0
=> a11 + a12 + a13 + ... + a17 < 0 (2)
Từ (1), (2), ta có: a1 + a2 + a3 + ... + a17 < 0 (mâu thuẫn với đề bài)
Vậy, không tồn tại 50 số thoả mãn yêu cầu đề bài
Giả sử tồn tại 50 số thảo mãn đề bài
Gọi các số đó lần lượt là a1, a2, a3, a4, ... a50
Theo bài ra ta có:
a1 + a2 + a3 + ... + a10 < 0 (1)
a11 + a12 + ... + a20 < 0
=> a1 + a2 + ... + a20 < 0
Mà a1 + a2 + ... + a17 > 0 (theo đề bài)
=> a18 + a19 + a20 < 0
Mà a11 + a12 + ... + a20 < 0
=> a11 + a12 + a13 + ... + a17 < 0 (2)
Từ (1), (2), ta có: a1 + a2 + a3 + ... + a17 < 0 (mâu thuẫn với đề bài)
Vậy, không tồn tại 50 số thoả mãn yêu cầu đề bài
Ai trên 10 điểm hỏi đáp thì mình nha mình đang cần gấp chỉ còn 59 điểm là tròn rồi mong các bạn hỗ trợ mình sẽ đền bù xứng đáng
Gọi 5 số lần lượt là a ; b ;c ;d ; e
Theo đề ra ta có
(a+b) = x
(b+c) = y
(c+d) = z
(d+e) = t
(e+a) = q
Với \(x;y;z;t;q>0\)
\(\Rightarrow\left(a+b\right)+\left(b+c\right)+\left(c+d\right)+\left(d+e\right)+\left(e+a\right)=x+y+z+t+q\)
\(\Rightarrow2\left(a+b+c+d+e\right)=x+y+z+t+q\)
\(\Rightarrow a+b+c+d+e=\frac{x+y+z+t+q}{2}\)
\(\Rightarrow\frac{x+y+z+t+q}{2}< 0\left(1\right)\)
Mặt khác vì \(x;y;z;t;q>0\)
\(\Rightarrow x+y+z+t+q>0\)
Nhân hai vế với \(\frac{1}{2}\)
Vì 1/2 lớn hơn 0 nên bất đẳng thức giứ nguyên chiều
\(\Rightarrow\left(x+y+z+t+q\right)\frac{1}{2}>0.\frac{1}{2}\)
\(\Rightarrow\frac{x+y+z+t+q}{2}>0\left(2\right)\)
Vì (1) mâu thuẫn với (2) nên
\(x;y;z;t;q\in\varnothing\)