Tìm giá trị của x trong biểu thức sau:
(1+4+7+...+100): x=17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 1 + 4 + 7 + .......................... + 100 ) : x = 17
1717 : x = 17
x = 1717 : 17
x = 101
Giải thích cách làm ( 1 + 4 + 7 + .......................... + 100 )
Có SSH là : ( 100 - 1 ) : 3 + 1 = 34
Tổng dãy số là : ( 100 + 1 ) x 34 : 2 = 1717
Hok tốt
Đặt A = 1 + 4 + 7 + ... + 100
Số số hạng của tổng A là : ( 100 - 1 ) / ( 4 - 1 ) + 1 = 34 ( số hạng )
Tổng của A là : ( 100 + 1 ) * 34 / 2 = 1717
=> 1717 / x = 17
x = 1717 / 17 = 101
a) Ta có:
1; 4; 7;...; 100 có (100 - 1) : 3 + 1 = 34 (số)
1 + 4 + 7+ ... + 100 = (100 + 1) × 34 : 2
= 101 × 17
(1 + 4 + 7 + ... + 100) : a = 17
101 × 17 : a = 17
a = 101 × 17 : 17
a = 100
b) (X - 1/2) × 5/3 = 7/4 - 1/2
(X - 1/2) × 5/3 = 5/4
X - 1/2 = 5/4 : 5/3
X - 1/2 = 3/4
X = 3/4 + 1/2
X = 5/4
a) (1 + 4 + 7 +...+ 100) : a = 17
1717 : a = 17
a = 101
b) \(\left(x-\dfrac{1}{2}\right)\times\dfrac{5}{3}=\dfrac{7}{4}-\dfrac{1}{2}\)
\(\left(x-\dfrac{1}{2}\right)\times\dfrac{5}{3}=\dfrac{10}{8}\)
\(\left(x-\dfrac{1}{2}\right)=\dfrac{10}{8}\div\dfrac{5}{3}\)
\(\left(x-\dfrac{1}{2}\right)=\dfrac{10}{8}\times\dfrac{3}{5}\)
\(\left(x-\dfrac{1}{2}\right)=\dfrac{3}{4}\)
\(x-\dfrac{1}{2}=\dfrac{3}{4}\)
\(x=\dfrac{3}{4}+\dfrac{1}{2}\)
\(x=\dfrac{5}{4}\)
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
a. Ta tính trước số bị chia: 1 + 4 + 7 + …… + 100
Dãy số gồm có: (100 – 1) : 3 + 1 = 34 (số hạng)
Ta thấy: 1 + 100 = 4 + 97 = 101 = …..
Do đó số bị chia là: 101 x 34 : 2 = 1717
Ta có: 1717 : a = 17
a = 1717 : 17
a = 101
vậy a = 101.
b.
x - 1 2 × 5 3 = 7 4 - 1 2 x - 1 2 × 5 3 = 5 4 x - 1 2 = 5 4 : 5 3 x - 1 2 = 3 4 x = 3 4 + 1 2 x = 5 4
c. 2000 2001 v à 2001 2002
Ta có: 1 - 2000 2001 = 1 2001
1 - 2001 2002 = 1 2002
Vì 1 2001 > 1 2002 nên 2000 2001 < 2001 2002
1) a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)
b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)
Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)
Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)
Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)
Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)
c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)
\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)
\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)
Answer:
a) \(\frac{5x}{2x+2}+1=\frac{6}{x+1}\)
\(\Rightarrow\frac{5x}{2\left(x+1\right)}+\frac{2\left(x+1\right)}{2\left(x+1\right)}=\frac{12}{2\left(x+1\right)}\)
\(\Rightarrow5x+2x+2-12=0\)
\(\Rightarrow7x-10=0\)
\(\Rightarrow x=\frac{10}{7}\)
b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\left(ĐK:x\ne0\right)\)
\(\Rightarrow x^2-6=x^2+\frac{3}{2}x\)
\(\Rightarrow\frac{3}{2}x=-6\)
\(\Rightarrow x=-4\)
c) \(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\ge0\)
\(\Rightarrow9x-6-6x-6\ge0\)
\(\Rightarrow3x-12\ge0\)
\(\Rightarrow x\ge4\)
d) \(\left(x+1\right)^2< \left(x-1\right)^2\)
\(\Rightarrow x^2+2x+1< x^2-2x+1\)
\(\Rightarrow4x< 0\)
\(\Rightarrow x< 0\)
e) \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\le\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Rightarrow\frac{2x-3+5\left(x^2-2x\right)}{35}\le\frac{5x^2-7\left(2x-3\right)}{35}\)
\(\Rightarrow2x-3+5x^2-10x\le5x^2-14x+21\)
\(\Rightarrow6x\le24\)
\(\Rightarrow x\le4\)
f) \(\frac{3x-2}{4}\le\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\le0\)
\(\Rightarrow9x-6-6x-6\le0\)
\(\Rightarrow3x\le12\)
\(\Rightarrow x\le4\)
(1 + 4 + 7 + .. + 100) : x = 17
=> (100 + 1).[(100 - 1) : 3 + 1] : 2 : x = 17
=> 101.34 : 2 : x = 17
=>1717 : x = 17
=> x = 101
( 1 + 4 + 7 + .......................... + 100 ) : X = 17
[(100-1):3+1]x(100+1):2 : X =17
[99:3+1] x 101 :2 : X=17
[33+1] x101 : 2 :X = 17
34 x 101 : 2 :X =17
17 x 101 : X = 17
1717:X=17
X=1717:17
X=101