K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b)Vì bảng ô vuông có kích thước 5x5 nên có tất cả:5 hàng,5 cột,2 đường chéo nên có tất cả 12 tổng.

Do khi điền vào các ô là các số 0,1,-1 nên mỗi tổng(S) là một số nguyên thỏa mãn:−5≤S≤5

\(⇒\)có 11 giá trị trong khi đó có 12 tổng nên theo nguyên lý Đi-rích-lê(hay còn gọi là chuồng thỏ) thì tồn tại ít nhất 2 tổng có giá trị bằng nhau.

a)Nếu p chẵn => p=2 => p^2 + 2^p = 2^2 + 2^2 =8 (loại)

 Nếu p lẻ :

+) p\(⋮\)3 => p=3 => p^2 + 2^p =17 (thỏa)

+)p ko chia hết cho 3. Đặt p=3k\(\pm\)1

p^2=(3k\(\pm\)1)^2=9k^2 \(\pm\)6k+1=3(3k^2 \(\pm\)2k)+1 chia 3 dư 1

Còn: 2^p\(\equiv\)(-1)^p\(\equiv\)-1 (mod 3) do p lẻ

Do đó:p^2+2^p=1+(-1)=0 (mod 3)

Mà p^2 + 2^p >3 nên ko thể là số nguyên tố (loại)

Vậy p=3 thì 2^p + p^2 là snt

29 tháng 1 2019

bài này cũng khá khó gặm but đối với anh thì khác!

Vì bảng ô vuông có kích thước 5x5 nên có tất cả:5 hàng,5 cột,2 đường chéo nên có tất cả 12 tổng.

Do khi điền vào các ô là các số 0,1,-1 nên mỗi tổng(S) là một số nguyên thỏa mãn:\(-5\le S\le5\)

\(\Rightarrow\)có 11 giá trị trong khi đó có 12 tổng nên theo nguyên lý Đi-rích-lê(hay còn gọi là chuồng thỏ) thì tồn tại ít nhất 2 tổng có giá trị bằng nhau.

Bài toán được chứng minh_._

Vì bảng ô vuông có kích thước 5x5 nên có tất cả:5 hàng,5 cột,2 đường chéo nên có tất cả 12 tổng.

Do khi điền vào các ô là các số 0,1,-1 nên mỗi tổng(S) là một số nguyên thỏa mãn:−5≤S≤5

có 11 giá trị trong khi đó có 12 tổng nên theo nguyên lý Đi-rích-lê(hay còn gọi là chuồng thỏ) thì tồn tại ít nhất 2 tổng có giá trị bằng nhau.

(ĐPCM)

16 tháng 4 2016

Giá trị nhỏ nhất của mỗi tổng là: -1 + -1 + -1 + -1+ -1 = -5
Giá trị lớn nhất của mỗi tổng là : 1+1+1+1+1=5
=> Số giá trị mà mỗi tổng có thể nhận được là : [5 - (-5) ] +1 = 11 giá trị
có 5 tổng theo hàng ngang, 5 tổng theo hàng dọc, 2 tổng theo hàng chéo
=> có tất cả 12 tổng nhận 11 giá trị
=> theo nguyên lý ĐRL thì có ít nhất 2 tổng bằng nhau

20 tháng 1 2017

Mình cũng cần bài này. Thanks LoRd DeMoN.

10 tháng 12 2020

giúp mik vs

29 tháng 12 2021

Trên mỗi hình vuông con, kích thước 2x2 chỉ có không quá 1 số chia hết cho 2, cũng vậy, có không quá 1 số chia hết cho 3

Lát kín bảng bởi 25 hình vuông, kích thước 2x2, có nhiều nhất 25 số chia hết cho 2, có nhiều nhất 25 số chia hết cho 3. Do đó, có ít nhất 50 số còn lại không chia hết cho 2, cũng không chia hết cho 3. Vì vậy, chúng phải là một trong các số 1,5,7.

Từ đó, theo nguyên lý Dirichlet, có một số xuất hiện ít nhất 17 lần.

29 tháng 12 2021

1,5,7

THIS IS SO HARD BRO

DD
28 tháng 5 2022

Trên mỗi hàng, mỗi cột phải có hai số -1, hai số 1. 

Ta sẽ xếp theo hàng. 

Ta có các khả năng của các hàng như sau: 

(1) 1, 1, -1, -1 

(2) 1, -1, -1, 1

(3) -1, -1, 1, 1

(4) -1, 1, -1, 1

(5) 1, -1, 1, -1

(6) -1, 1, 1, -1

Giả sử hàng 1 ta điền bộ (1). Ta có các trường hợp sau: 

TH1: Hàng 2 điền bộ (1), khi đó hàng 3, hàng 4 ta phải điền bộ (3). 

TH2: Hàng 2 điền bộ để tổng 2 số trong của các cột bằng 0, khi đó ta điền bộ (3). Hàng 3 và hàng 4 khi đó cũng phải điền sao cho tổng các cột trong hai hàng bằng 0. Có 6 cách điền như vậy. 
TH3: Hàng 2 điền sao cho có 2 cột trong 4 cột có tổng bằng 0. Có 4 cách. Khi đó điền hàng 3 có 2 cách, điền hàng 4 có 1 cách. Tổng số cách là: 1.4.2.1=8 (cách). 

Vậy có tổng số cách là: 6.(1 + 6 + 8) = 90 (cách).

DD
28 tháng 5 2022