K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề:Cho m,n là các số nguyên dương với \(n>1\).Đặt \(P=m^2n^2-4m+4n\)Chứng minh rằng nếu P là số chính phương thì m=nGiả sử \(m>n>1\) Xét \(\left(mn^2-2\right)^2-n^2\left(m^2n^2-4m+4n\right)\)\(=m^2n^4-4mn^2+4-mn^4+4mn^2-4n^3\)\(=-4n^3+4< 0\) với  \(\forall n>1\)\(\Rightarrow\left(mn^2-2\right)^2< n^2\left(m^2n^2-4n+4n\right)\left(1\right)\)Xét \(n^2\left(m^2n^2-4m+4n\right)-m^2n^4\)\(=m^2n^4-4mn^2+4n^3-m^2n^4\)\(=-4mn^2+4n^3\)\(=-4n^2\left(m-n\right)<...
Đọc tiếp

Đề:Cho m,n là các số nguyên dương với \(n>1\).Đặt \(P=m^2n^2-4m+4n\)

Chứng minh rằng nếu P là số chính phương thì m=n

Giả sử \(m>n>1\)

 Xét \(\left(mn^2-2\right)^2-n^2\left(m^2n^2-4m+4n\right)\)

\(=m^2n^4-4mn^2+4-mn^4+4mn^2-4n^3\)

\(=-4n^3+4< 0\) với  \(\forall n>1\)

\(\Rightarrow\left(mn^2-2\right)^2< n^2\left(m^2n^2-4n+4n\right)\left(1\right)\)

Xét \(n^2\left(m^2n^2-4m+4n\right)-m^2n^4\)

\(=m^2n^4-4mn^2+4n^3-m^2n^4\)

\(=-4mn^2+4n^3\)

\(=-4n^2\left(m-n\right)< 0\) với \(\forall m>n>1\)

\(\Rightarrow n^2\left(m^2n^2-4m+4n\right)< m^2n^4\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\left(mn^2-2\right)^2< n^2\left(m^2n^2-4m+4n\right)< m^2n^4\)

\(\Rightarrow\left(\frac{mn^2-2}{n}\right)^2< P< \left(mn\right)^2\)

Xét \(\frac{mn^2-2}{n}-\left(mn-1\right)=\frac{n-2}{n}\ge0\)  với \(\forall n\ge2\)

\(\Rightarrow\frac{mn^2-2}{n}\ge mn-1\)

\(\Rightarrow\left(mn-1\right)^2< P< \left(mn\right)^2\left(VL\right)\)

Kẹp giữa 2 số chính phương liên tiếp thì không tồn tại số chính phương nào.OK?

Giả sử \(m< n\)

\(\Rightarrow P>m^2n^2\left(3\right)\)

Xét \(m^2n^2-4m+4n-\left(mn+2\right)^2\)

\(=m^2n^2-4m+4n-m^2n^2-4mn-4\)

\(=n-m-mn-1=n\left(1-m\right)-m-1< 0\) 

\(\Rightarrow P< \left(mn+2\right)^2\left(4\right)\)

Từ \(\left(3\right);\left(4\right)\Rightarrow\left(mn\right)^2< P< \left(mn+2\right)^2\)

Để P là số chính phương thì \(P=\left(mn+1\right)^2\)

\(\Rightarrow m^2n^2-4m+4n=m^2n^2+2mn+1\)

\(\Rightarrow-4m+4n-2mn=1\) quá VL

Với  \(m=n\Rightarrow P=m^2n^2=\left(mn\right)^2\left(Lscp\right)\) cực kỳ HL:v

P/S:Ko chắc đâu nha.m thử làm bài 1 cấy.t cụng ra rồi nhưng coi cách m cho nó chắc:v Định dùng cách kẹp khác mà đề cho chặt quá:((

 

 

1
15 tháng 11 2019

 \(A\left(x\right)=Q\left(x\right)\left(x-1\right)+4\)(1)

 \(A\left(x\right)=P\left(x\right)\left(x-3\right)+14\)(2)

\(A\left(x\right)=\left(x-1\right)\left(x-3\right)T\left(x\right)+F\left(x\right)\)(3)

Đặt : \(F\left(x\right)=ax+b\)

Với x=1  từ (1) và (3) 

\(\hept{\begin{cases}A\left(1\right)=4\\A\left(1\right)=a+b\end{cases}}\)

\(\Rightarrow a+b=4\)(*)

Với x=3 từ (3) và (2)

\(\hept{\begin{cases}A\left(3\right)=14\\A\left(3\right)=3a+b\end{cases}}\)

\(\Rightarrow3a+b=14\)(**)

Từ (*) và (**)

\(\Rightarrow2a=10\Rightarrow a=5\Rightarrow b=-1\)

\(\Rightarrow F\left(x\right)=ax+b=5x-1\)

T lm r, ko bt có đúng ko:))

24 tháng 11 2018

a) \(A=\dfrac{mn^2+n^2\left(n^2-m\right)+1}{m^2n^4+2n^4+m^2+2}\)

\(A=\dfrac{mn^2+n^4-mn^2+1}{n^4\left(m^2+2\right)+m^2+2}=\dfrac{n^4+1}{\left(m^2+2\right)\left(n^4+1\right)}=\dfrac{1}{m^2+2}\)

b) CM \(\dfrac{1}{m^2+2}>0\)

ta có \(\left\{{}\begin{matrix}m^2+2>0\\1>0\end{matrix}\right.\forall m\in R\)

\(\Rightarrow\dfrac{1}{m^2+2}>0\forall m\in R\)

vậy đpcm

c) \(A=\dfrac{1}{m^2+2}=\dfrac{2}{2m^2+4}=\dfrac{m^2+2-m^2}{2m^2+4}=\dfrac{1}{2}-\dfrac{m^2}{2m^2+4}\le\dfrac{1}{2}\forall m\in R\)

dấu '=' xảy ra khi m=0

vậy \(A_{max}=\dfrac{1}{2}\) khi m=0

3 tháng 2 2020

\(ĐKXĐ:x\ne0;x\ne\pm2\)

a) \(M=\left[\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right]:\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(\Leftrightarrow M=\left[\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right]:\frac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\)

\(\Leftrightarrow M=\frac{3x^2-6x\left(x+2\right)+3x\left(x-2\right)}{3x\left(x-2\right)\left(x+2\right)}:\frac{x^2-4+10-x^2}{x+2}\)

\(\Leftrightarrow M=\frac{3x^2-6x^2-12x+3x^2-6x}{3x\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)

\(\Leftrightarrow M=\frac{-18x\left(x+2\right)}{18x\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow M=-\frac{1}{x-2}\)

\(\Leftrightarrow M=\frac{1}{2-x}\)

b) Để M đạt giá trị lớn nhất

\(\Leftrightarrow2-x\)đạt giá trị nhỏ nhất

\(\Leftrightarrow x\)đạt giá trị lớn nhất

Vậy để M đạt giá trị lớn nhất thì x phải đạt giá trị lớn nhất \(\left(x\inℤ\right)\)

5 tháng 2 2020

玉明, bạn làm sai rồi. Dấu ngoặc vuông là dấu phần nguyên không phải dấu ngoặc thường