K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2019

a) \(3x^2-2x=0\)

Phương trình này xác định với mọi x

b)\(\frac{1}{x-1}=3\)

pt xác định \(\Leftrightarrow x-1\ne0\Leftrightarrow x\ne1\)

c) \(\frac{2}{x-1}=\frac{x}{2x-4}\)

pt xác định\(\Leftrightarrow\hept{\begin{cases}x-1\ne0\\2x-4\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne2\end{cases}}\)

d) \(\frac{2x}{x^2-9}=\frac{1}{x+3}\)

pt xác định\(\Leftrightarrow\hept{\begin{cases}x^2-9\ne0\\x+3\ne0\end{cases}}\Leftrightarrow x\ne\pm3\)

e) \(2x=\frac{1}{x^2-2x+1}\)

pt xác định\(\Leftrightarrow x^2-2x+1\ne0\Leftrightarrow\left(x-1\right)^2\ne0\)

\(\Leftrightarrow x-1\ne0\Leftrightarrow x\ne1\)

f) \(\frac{1}{x-2}=\frac{2x}{x^2-5x+6}\)

\(\Leftrightarrow\frac{1}{x-2}=\frac{2x}{\left(x-3\right)\left(x-2\right)}\)

pt xác định\(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\\left(x-2\right)\left(x-3\right)\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

 
 
NV
1 tháng 7 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}3x-2\ge0\\3x^2-17x+4=\left(3x-2\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\3x^2-17x+4=9x^2-12x+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\6x^2+5x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\left[{}\begin{matrix}x=0< \dfrac{2}{3}\left(loại\right)\\x=-\dfrac{5}{6}< \dfrac{2}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy pt đã cho vô nghiệm

NV
1 tháng 7 2021

b.

ĐKXĐ: \(\left[{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\)

Đặt \(\sqrt{x^2-5x+4}=t\ge0\Leftrightarrow x^2-5x=t^2-4\)

\(\Rightarrow2x^2-10x=2t^2-8\)

Phương trình trở thành:

\(2t^2-8-3t+6=0\)

\(\Leftrightarrow2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-\dfrac{1}{2}< 0\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-5x+4}=2\)

\(\Leftrightarrow x^2-5x=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

a) Ta có: \(\left|x^2-x+2\right|-3x-7=0\)

\(\Leftrightarrow\left|x^2-x+2\right|=3x+7\)

\(\Leftrightarrow x^2-x+2=3x+7\)(Vì \(x^2-x+2>0\forall x\))

\(\Leftrightarrow x^2-x+2-3x-7=0\)

\(\Leftrightarrow x^2-4x-5=0\)

\(\Leftrightarrow x^2-5x+x-5=0\)

\(\Leftrightarrow x\left(x-5\right)+\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

Vậy: S={5;-1}

6 tháng 3 2021

bạn giải giúp mình câu b nữa với

mai mình phải nộp bài rồi!!!khocroi

a: 3x-15=0

nên 3x=15

hay x=5

b: 4x+20=0

nên 4x=-20

hay x=-5

c: -5x-20=0

nên -5x=20

hay x=-4

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \(\sin 2x + 1 - 2{\sin ^2}2x = 0\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\sin 2x = 1}\\{\sin 2x =  - \frac{1}{2}}\end{array}\;\;\;} \right. \Leftrightarrow \;\left[ {\begin{array}{*{20}{c}}{\sin 2x = \sin \frac{\pi }{2}}\\{\sin 2x = \sin  - \frac{\pi }{6}}\end{array}} \right.\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x = \frac{\pi }{2} + k2\pi }\\{2x =  - \frac{\pi }{6} + k2\pi }\\{2x = \pi  + \frac{\pi }{6} + k2\pi }\end{array}} \right.\;\;\)

\( \Leftrightarrow \;\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{4} + k2\pi }\\{x =  - \frac{\pi }{{12}} + k\pi }\\{x = \frac{{7\pi }}{{12}} + k\pi }\end{array}} \right.\;\;\left( {k \in \mathbb{Z}} \right)\)

b) \(\cos 3x =  - \cos 7x\; \Leftrightarrow \cos 3x + \cos 7x = 0\;\; \Leftrightarrow 2\cos 5x\cos 2x = 0\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos 5x = 0}\\{\cos 2x = 0\;}\end{array}} \right.\;\;\)

\( \Leftrightarrow \left[ \begin{array}{l}\cos 5x = \cos \frac{\pi }{2}\\\cos 2x = \cos \frac{\pi }{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}5x = \frac{\pi }{2} + k2\pi \\5x =  - \frac{\pi }{2} + k2\pi \\2x = \frac{\pi }{2} + k2\pi \\2x =  - \frac{\pi }{2} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{10}} + \frac{{k2\pi }}{5}\\x =  - \frac{\pi }{{10}} + \frac{{k2\pi }}{5}\\x = \frac{\pi }{4} + k\pi \\x =  - \frac{\pi }{4} + k\pi \end{array} \right.;k \in Z\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \(\sqrt 3 \tan 2x =  - 1\;\; \Leftrightarrow \tan 2x =  - \frac{1}{{\sqrt 3 }}\;\;\; \Leftrightarrow \tan 2x = \tan  - \frac{\pi }{6}\; \Leftrightarrow 2x =  - \frac{\pi }{6} + k\pi \)

\(\;\; \Leftrightarrow x =  - \frac{\pi }{{12}} + \frac{{k\pi }}{2}\;\left( {k \in \mathbb{Z}} \right)\)

b) \(\tan 3x + \tan 5x = 0\;\; \Leftrightarrow \tan 3x = \tan \left( { - 5x} \right) \Leftrightarrow 3x =  - 5x + k\pi \;\; \Leftrightarrow 8x = k\pi \;\; \Leftrightarrow x = \frac{{k\pi }}{8}\;\left( {k \in \mathbb{Z}} \right)\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a)      \(2{x^2} - 3x + 1 > 0\)

Tam thức \(f\left( x \right) = 2{x^2} - 3x + 1\) có \(a + b + c = 2 - 3 + 1 = 0\) nên hai nghiệm phân biệt \({x_1} = 1\) và \({x_2} = \frac{1}{2}.\)

Mặt khác \(a = 2 > 0,\) do đó ta có bảng xét dấu sau:

Tập nghiệm của bất phương trình là: \(S= \left( { - \infty ;\frac{1}{2}} \right) \cup \left( {1; + \infty } \right).\)

b)     \({x^2} + 5x + 4 < 0\)

Tam thức \(f\left( x \right) = {x^2} + 5x + 4\) có \(a - b + c = 1 - 5 + 4 = 0\) nên phương trình có hai nghiệm phân biệt \(x =  - 1\) và \(x =  - 4.\)

Mặt khác \(a = 1 > 0,\) do đó ta có bảng xét dấu sau:

Tập nghiệm của bất phương trình là: \(S = \left( { - 4; - 1} \right).\)

c)      \( - 3{x^2} + 12x - 12 \ge 0\)

Tam thức \(f\left( x \right) =  - 3{x^2} + 12x - 12 =  - 3\left( {{x^2} - 4x + 4} \right) =  - 3{\left( {x - 2} \right)^2} \le 0\)

Do đó 

\( - 3{x^2} + 12x - 12 \ge 0 \Leftrightarrow  - 3{x^2} + 12x - 12 = 0 \Leftrightarrow  - 3{\left( {x - 2} \right)^2} = 0 \Leftrightarrow x = 2.\)

Tập nghiệm của bất phương trình là: \(S = \left( { 2} \right).\)

d)     \(2{x^2} + 2x + 1 < 0.\)

Tam thức \(f\left( x \right) = 2{x^2} + 2x + 1\) có \(\Delta  =  - 1 < 0,\) hệ số \(a = 2 > 0\) nên \(f\left( x \right)\) luôn dướng với mọi \(x,\) tức là \(2{x^2} + 2x + 1 > 0\) với mọi \(x \in \mathbb{R}.\)

\( \Rightarrow \) bất phương trình vô nghiệm

12 tháng 5 2021

`a,4x^2+(x-1)^2-(2x+1)^2=0`

`<=>4x^2+3x(-x-2)=0`

`<=>x(4x-3x-6)=0`

`<=>x(x-6)=0`

`<=>` $\left[ \begin{array}{l}x=0\\x=6\end{array} \right.$

12 tháng 5 2021

`b)(x^2-3x)^2+5(x^2-3x)+6=0`
Đặt `x^2-3x=a(a>=-9/4)`
`pt<=>a^2+5a+6=0`
`<=>(a+2)(a+3)=0`
`<=>` $\left[ \begin{array}{l}a=-2\\a=-3(l)\end{array} \right.$
`<=>x^2-3x=-2`
`<=>x^2-3x+2=0`
`<=>(x-1)(x-2)=0`
`<=>` $\left[ \begin{array}{l}x=2\\x=1\end{array} \right.$

5 tháng 10 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}6x-9y=-15\\-6x+8y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3y=-5\\-y=-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-5+33}{2}=14\\y=11\end{matrix}\right.\)

 

b: \(\left\{{}\begin{matrix}2x-3y=-5\\-3x+4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-9y=-15\\-6x+8y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-y=-11\\2x-3y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=11\\x=\dfrac{-5+3y}{2}=\dfrac{-5+3\cdot11}{2}=14\end{matrix}\right.\)