K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2019

Chúc bạn học tốt!

14 tháng 6 2017

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0\)

\(\Rightarrow\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}}\Rightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{y}{b}=\frac{z}{c}\\\frac{x}{a}=\frac{z}{c}\\\frac{y}{b}=\frac{x}{a}\end{cases}}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

14 tháng 6 2017

* C1 :(bz - cy)/a = (abz - acy)/a2

(cx - az)/b = (bcx - abz)/b2

(ay - bx)/c = (acy - bcx)/c2

Mà (bz - cy)/a = (cx - az)/b = (ay - bx)/c

=>(abz - acy)/a2 = (bcx - abz)/b2 = (acy - bcx)/c2 = (abz - acy + bcx - abz + acy - bcx)/a2 + b2 + c2 = 0

=>(bz - cy)/a = (cx - az)/b = (ay - bx)/c = 0

=>bz - cy = cx - az = ay - bx = 0

*Xét bz - cy = 0

=>bz = cy

=>z/c = y/b

Chứng minh tương tự = >x/a = y/b ; x/a = z/c

=> x/a = y/b = z/c

*C2 : 

(bz - cy)/a = (abz - acy)/ax

(cx - az)/by = (bcx - abz)/by

(ay - bx)/cz = (acy - bcx)/cz

Làm tương tự như C1

8 tháng 10 2015

Vì : bz-cy/a=cx-az/b=ay-bx/c

=> a(bz-cy)/a^2=b(cx-az)/b^2=c(ay-bx)/c^2  

=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2  

Ap dung tính chất của dãy tỉ số bằng nhau :  

=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2=a^2+...  

= 0/a^2+b^2+c^2=0  

Vì bz-cy/a=0=>bz=cy=>y/b=z/c (1)  

Vì cx-az/b=0=>cx=az=>x/a=z/c (2)  

Từ (1) và (2) => x/a=y/b=z/c

14 tháng 8 2016

Ta có : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\Leftrightarrow\frac{baz-cay}{a^2}=\frac{cbx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{baz-cay+cbx-abz+acy-bcx}{a^2+b^2+c^2}=0\)

\(\Rightarrow bz=cy\Leftrightarrow\frac{y}{b}=\frac{z}{c}\)

\(\Rightarrow cx=az\Leftrightarrow\frac{x}{a}=\frac{z}{c}\) 

\(\Rightarrow ay=bx\Leftrightarrow\frac{x}{a}=\frac{y}{b}\)

\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

 

 

14 tháng 8 2016

Hỏi đáp Toán

18 tháng 11 2017

Tham khảo ở đây:

Câu hỏi của Hann Hann - Toán lớp 7 - Học toán với OnlineMath

17 tháng 3 2016

Ta có:(bz-cy)/a=(cx-az)/b=(ay-bx)/c

<=>(abz-acy)/a2=(bcx-abz)/b2=(acy-bcx)/c2

Theo t/c dãy tỉ số=nhau:

(abz-acy)/a2=(bcx-abz)/b2=(acy-bcx)/c2=(abz-acy+bcx-abz+acy-bcx)/a2+b2+c2=0/a2+b2+c2=0

Do đó: bz-cy=cx-az=ay-bx=0

*bz-cy=0<=>bz=cy<=>y/b=z/c(1)

*cx-az=0<=>cx=az<=>x/a=z/c(2)

*ay-bx=0<=>ay=bx<=>x/a=y/b(3)

Từ (1);(2);(3)=>x/a=y/b=z/c(đpcm)

17 tháng 3 2016

Dạng này dễ

c nhân a vào tỉ số 1;nhân  b vào t/s 2;nhân c vào t/s 3, áp dụng dtsbn là đc

1 tháng 12 2018

giả sử

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

ta có:\(\text{​​}\text{​​}\text{​​}\text{​​}\text{​​}\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bxz-cyx}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bxz}{cz}=\frac{bxz-cyx+cxy-ayz+ayz-bxz}{ax+by+cz}=0\)

\(\frac{bz-cy}{a}=0\Rightarrow bz=cy\Rightarrow\frac{z}{c}=\frac{y}{b}\left(1\right)\)

\(\frac{cx-az}{b}=0\Rightarrow cx=az\Rightarrow\frac{z}{c}=\frac{x}{a}\left(2\right)\)

\(\frac{ay-bx}{c}=0\Rightarrow ay=bx\Rightarrow\frac{x}{a}=\frac{y}{b}\left(3\right)\)

từ (1),(2),(3) => \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

=> điều giả sử đúng => đpcm

2 tháng 12 2018

ê cho sửa cái bài này cái :>

đặt\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak,y=bk,z=ck\)

\(\frac{bz-cy}{a}=\frac{bck-cbk}{a}=0\)(1)

\(\frac{cx-az}{b}=\frac{cak-ack}{b}=0\)(2)

\(\frac{ay-bx}{c}=\frac{abk-bak}{c}=0\)(3)

từ (1),(2),(3) => đpcm