\(10\dfrac{1}{4}\div\left(\dfrac{-3}{5}\right)-8\dfrac{1}{4}\div\left(\dfrac{-3}{5}\right)\) tính
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =-8/28-7/28=-15/28
b: \(=\dfrac{-4}{18}+\dfrac{3}{7}\cdot\dfrac{14}{15}=\dfrac{-2}{9}+\dfrac{14}{15}=\dfrac{-10+42}{45}=\dfrac{32}{45}\)
c: \(=\dfrac{-3\cdot5+7\cdot2}{20}\cdot\dfrac{-5}{1}-\dfrac{2}{9}\)
\(=\dfrac{-7}{4}-\dfrac{2}{9}=\dfrac{-63}{36}-\dfrac{8}{36}=-\dfrac{71}{36}\)
a)\(\dfrac{2}{3}-\dfrac{3}{5}:\left(-1\dfrac{1}{5}\right)+\left(\dfrac{-2}{3}\right)\cdot\dfrac{3}{8}\)
\(=\dfrac{2}{3}-\dfrac{3}{5}\cdot\dfrac{-5}{6}+\left(\dfrac{-1}{4}\right)=\dfrac{5}{12}+\dfrac{1}{2}=\dfrac{11}{12}\)
b)\(17\dfrac{11}{9}-\left(6\dfrac{3}{13}+7\dfrac{11}{19}\right)+\left(10\dfrac{3}{13}-5\dfrac{1}{4}\right)=\dfrac{164}{9}-\left(\dfrac{81}{13}+\dfrac{144}{19}\right)+\left(\dfrac{133}{13}-\dfrac{21}{4}\right)=\dfrac{164}{9}-\dfrac{3411}{247}+\dfrac{259}{52}=\dfrac{6425}{684}\)
c)\(\left(\dfrac{-3}{2}\right)^2-\left[-2\dfrac{1}{3}-\left(\dfrac{3}{4}+\dfrac{1}{3}\right):2\dfrac{3}{5}\right]\cdot\left(\dfrac{-3}{4}\right)=\dfrac{9}{4}-\left[\dfrac{-7}{3}-\dfrac{13}{12}\cdot\dfrac{5}{13}\right]\cdot\left(\dfrac{-3}{4}\right)=\dfrac{9}{4}-\left(\dfrac{-11}{4}\right)\cdot\left(\dfrac{-3}{4}\right)=\dfrac{3}{16}\)
d)\(\dfrac{21}{33}:\dfrac{11}{5}-\dfrac{13}{33}:\dfrac{11}{5}+\dfrac{25}{33}:\dfrac{11}{5}+\dfrac{6}{11}=\dfrac{5}{11}\cdot\left(\dfrac{21}{33}-\dfrac{13}{33}+\dfrac{25}{33}\right)+\dfrac{6}{11}=\dfrac{5}{11}\cdot1+\dfrac{6}{11}=1\)
\(a)\dfrac{2}{3}-\dfrac{3}{5}:\left(-1\dfrac{1}{5}\right)+\left(\dfrac{-2}{3}\right).\dfrac{3}{8}\)
\(=\dfrac{2}{3}-\dfrac{3}{5}:\left(\dfrac{-6}{5}\right)+\left(\dfrac{-2}{3}\right).\dfrac{3}{8}\)
\(=\dfrac{2}{3}-\dfrac{-1}{2}+\left(\dfrac{-2}{3}\right).\dfrac{3}{8}\)
\(=\dfrac{2}{3}-\dfrac{-1}{2}+\dfrac{-1}{4}\)
\(=\dfrac{7}{6}+\dfrac{-1}{4}\)
\(=\dfrac{11}{12}\)
c)
Ta có :\(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)
\(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{3}{2}}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{2}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{\dfrac{8}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{3}{8}}\) \(=2+\dfrac{1}{\dfrac{11}{8}}\) \(=2+\dfrac{8}{11}\) \(=\dfrac{30}{11}\)
d) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\dfrac{1}{4}:2\)
\(=3-1+\dfrac{1}{8}\)
\(=\dfrac{17}{8}\)
\(\left(-\dfrac{4}{3}+\dfrac{5}{13}\right):\dfrac{2}{7}-\left(\dfrac{9}{4}+\dfrac{8}{13}\right):\dfrac{2}{7}\\ =\left(-\dfrac{4}{3}+\dfrac{5}{13}-\dfrac{9}{4}-\dfrac{8}{13}\right):\dfrac{2}{7}\\ =-\dfrac{595}{156}:\dfrac{2}{7}\\ =-\dfrac{595}{156}.\dfrac{7}{2}=-\dfrac{4165}{312}\)
a: Ta có: \(\left(4\sqrt{2}-\dfrac{11}{2}\sqrt{8}-\dfrac{1}{3}\sqrt{288}+\sqrt{50}\right)\cdot\left(\dfrac{1}{2}\sqrt{2}\right)\)
\(=\dfrac{1}{2}\sqrt{2}\cdot\left(4\sqrt{2}-11\sqrt{2}-4\sqrt{2}+5\sqrt{2}\right)\)
\(=\dfrac{1}{2}\sqrt{2}\cdot6\sqrt{2}=3\)
a) x: (3/4)3=(3/4)2
x = (3/4)2 . (3/4)3
x = (3/4)5
b)(2/5)5 :x = (2/5)8
x= (2/5)8 : (2/5)5
x= (2/5)3
a, \(x:\left(\dfrac{3}{4}\right)^3=\left(\dfrac{3}{4}\right)^2\)
=> \(x=\left(\dfrac{3}{4}\right)^2.\left(\dfrac{3}{4}\right)^3\)
=> \(x=\left(\dfrac{3}{4}\right)^5\)
b, \(\left(\dfrac{2}{5}\right)^5:x=\left(\dfrac{2}{5}\right)^8\)
\(x=\left(\dfrac{2}{5}\right)^5:\left(\dfrac{2}{5}\right)^8\)
\(x=\left(\dfrac{2}{5}\right)^{-3}\)
a) \(\left(-1\dfrac{3}{5}+x\right):\dfrac{12}{13}=2\dfrac{1}{6}\)
⇔ \(\left(\dfrac{-8}{5}+x\right).\dfrac{13}{12}=\dfrac{13}{6}\)
⇔ \(-\dfrac{8}{5}+x=\dfrac{13}{6}:\dfrac{13}{12}\)
⇔ \(-\dfrac{8}{5}+x=2\)
⇔ \(x=2+\dfrac{8}{5}\)
⇔ \(x=\dfrac{18}{5}\)
b) \(\dfrac{-4}{7}x+\dfrac{7}{5}=\dfrac{1}{8}:\left(-1\dfrac{2}{3}\right)\)
⇔ \(-\dfrac{4}{7}x+\dfrac{7}{5}=-\dfrac{3}{40}\)
⇔ \(-\dfrac{4}{7}x=-\dfrac{3}{40}-\dfrac{7}{5}\)
⇔ \(-\dfrac{4}{7}x=-\dfrac{59}{40}\)
⇔ \(x=\left(-\dfrac{59}{40}\right):\left(-\dfrac{4}{7}\right)\)
⇔ \(x=\dfrac{413}{160}\)
a, \(\left(-1\dfrac{3}{5}+x\right):\dfrac{12}{13}=2\dfrac{1}{6}\)
=> \(\left(-1\dfrac{3}{5}+x\right):\dfrac{12}{13}=\dfrac{13}{6}\)
=> \(\left(-1\dfrac{3}{5}+x\right)=\dfrac{13}{6}.\dfrac{12}{13}\)
=> \(\left(-1\dfrac{3}{5}+x\right)=2\)
=> \(\dfrac{-8}{5}+x=2\)
=> x= \(2+\dfrac{8}{5}=\dfrac{10}{5}+\dfrac{8}{5}\)
=> x= \(\dfrac{18}{5}\)
\(a,x=\dfrac{1}{5}+\dfrac{-3}{7}\)
\(x=\dfrac{7}{35}+\dfrac{-15}{35}\)
\(x=-\dfrac{8}{35}\)
\(b,\dfrac{3}{5}-\dfrac{4}{7}:x=\dfrac{-9}{10}\)
\(\dfrac{4}{7}:x=\dfrac{3}{5}-\dfrac{-9}{10}\)
\(\dfrac{4}{7}:x=\dfrac{3}{2}\)
\(x=\dfrac{4}{7}:\dfrac{3}{2}\)
\(x=\dfrac{4}{7}\times\dfrac{2}{3}\)
\(x=\dfrac{8}{21}\)
\(c,x-\left(\dfrac{-3}{4}\right)=\dfrac{-2}{3}-\dfrac{1}{2}\)
\(x+\dfrac{3}{4}=\dfrac{-4}{6}-\dfrac{3}{6}\)
\(x+\dfrac{3}{4}=-\dfrac{7}{6}\)
\(x=-\dfrac{7}{6}-\dfrac{3}{4}\)
\(x=-\dfrac{23}{12}\)
\(d,\dfrac{-5}{9}-x=\dfrac{1}{3}+\dfrac{7}{18}\)
\(\dfrac{-5}{9}-x=\dfrac{6}{18}+\dfrac{7}{18}\)
\(\dfrac{-5}{9}-x=\dfrac{13}{18}\)
\(x=\dfrac{-5}{9}-\dfrac{13}{18}\)
\(x=\dfrac{-10}{18}-\dfrac{13}{18}\)
\(x=-\dfrac{23}{18}\)
`a)sqrt{28a^4}`
`=sqrt{7.4.a^4}`
`=2sqrt7a^2`
`b)A=((sqrt{21}-sqrt7)/(sqrt3-1)+(sqrt{10}-sqrt5)/(sqrt2-1)):1/(sqrt7-sqrt5)`
`=((sqrt7(sqrt3-1))/(sqrt3-1)+(sqrt5(sqrt2-1))/(sqrt2-1)).(sqrt7-sqrt5)`
`=(sqrt7+sqrt5)(sqrt7-sqrt5)`
`=7-5=2`
`c)` $\begin{cases}\dfrac{3}{2x}-y=6\\\dfrac{1}{x}+2y=-4\end{cases}$
`<=>` $\begin{cases}\dfrac{3}{x}-2y=12\\\dfrac{1}{x}+2y=-4\end{cases}$
`<=>` $\begin{cases}\dfrac{4}{x}=8\\2y+\dfrac{1}{x}=-4\end{cases}$
`<=>` $\begin{cases}x=\dfrac12\\2y=-4-2=-6\end{cases}$
`<=>` $\begin{cases}x=\dfrac12\\y=-3\end{cases}$
Vậy HPT có nghiệm `(x,y)=(1/2,-3)`.
\(10\dfrac{1}{4}:\dfrac{-3}{5}-8\dfrac{1}{4}:\dfrac{-3}{5}\)
\(=\dfrac{41}{4}\cdot\dfrac{-5}{3}-\dfrac{33}{4}\cdot\dfrac{-5}{3}\)
\(=\dfrac{-5}{3}\cdot2=-\dfrac{10}{3}\)