Cho tam giác ABC nhọn(AB<AC). Gọi M là trung điểm của BC. Vẽ D là điểm đối xứng với A qua M
A) chứng minh ABDC là hình bình hành
B) vẽ đường cao AH. Gọi E là điểm đối xứng với A qua H. Chứng minh BEDC là hình thang cân
C) gọi N là trung điểm của AC. Gọi K là điểm đối xứng của H qua N. Chứng minh AHCK là hình chữ nhật
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
b: Xét ΔAED có AH/AE=AM/AD
nên HM//ED
=>ED//CB
Xet ΔCAE có
CH vừa là đường cao, vừa là trung tuyến
=>ΔCAE can tại C
=>CA=CE=BD
Vì BC//ED và BD=CE
nên BCDE là hình thang cân
c: Xét tứ giác AHCK có
N là trung điểm chung của AC và HK
góc AHC=90 độ
=>AHCK là hình chữ nhật