Tìm 3 số biết tổng các bình phương của chúng bằng 8125 và số thứ hai bằng \(\frac{2}{5}\)và số thứ nhất và bằng \(\frac{3}{4}\)số thứ ba
giúp mình với mình cần gấp, cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Gọi số thứ nhất cần tìm là x,số thứ hai cần tìm là y,số thứ ba cần tìm là z. Theo đề bài ta có :
x2 + y2 + z2 = 8125
Mà \(y=\frac{2}{5}x\)=> \(5y=2x\)=> \(\frac{x}{5}=\frac{y}{2}\)(1)
\(y=\frac{3}{4}z\)=> 4y = 3z => \(\frac{y}{3}=\frac{z}{4}\)(2)
Từ (1) và (2) => \(\frac{x}{5}=\frac{y}{2};\frac{y}{3}=\frac{z}{4}\)
+) \(\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{6}\)
+) \(\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{6}=\frac{z}{8}\)
=> \(\frac{x}{15}=\frac{y}{6}=\frac{z}{8}\)
=> \(\frac{x^2}{15^2}=\frac{y^2}{6^2}=\frac{z^2}{8^2}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{15^2}=\frac{y^2}{6^2}=\frac{z^2}{8^2}=\frac{x^2+y^2+z^2}{15^2+6^2+8^2}=\frac{8125}{325}=25=5^2\)
=> x2 = 52 . 152 = 752 => x = \(\pm\)75
y2 = 52 . 62 = 302 => y = \(\pm\)30
z2 = 52 . 82 = 402 => z = \(\pm\)40
Bài 2 tự làm
gọi 3 số cần tìm là x,y,z ; ta có:
\(\hept{\begin{cases}x^2+y^2+z^2=481\\y=\frac{4}{3}x\\y=\frac{3}{4}z\end{cases}}\Rightarrow\hept{\begin{cases}x^2+y^2+z^2=481\left(1\right)\\x=\frac{3}{4}y\left(2\right)\\z=\frac{4}{3}y\left(3\right)\end{cases}}\)
Thay (2),(3) vào (1) ta được: \(\left(\frac{3}{4}y\right)^2+y^2+\left(\frac{4}{3}y\right)^2=481\)
\(\Rightarrow\frac{9}{16}y^2+y^2+\frac{16}{9}y^2=481\)
\(\Rightarrow\frac{481}{144}y^2=481\Rightarrow y^2=144\Rightarrow y=12\)
\(\Rightarrow\hept{\begin{cases}x=\frac{3}{4}y=\frac{3}{4}.12=9\\z=\frac{4}{3}y=\frac{4}{3}.12=16\end{cases}}\)
Vậy 3 số đó là 9,12,16
Gọi số thứ nhất là a; số thứ hai là ; số thứ 3 là c
Ta có a2 + b2 + c2 = 481
Lại có \(b=\frac{4}{3}a=\frac{3}{4}c\)
=> \(b.\frac{1}{12}=\frac{4}{3}a.\frac{1}{12}=\frac{3}{4}c.\frac{1}{12}\)
=> \(\frac{b}{12}=\frac{a}{9}=\frac{c}{16}\)
Đặt \(\frac{b}{12}=\frac{a}{9}=\frac{c}{16}=k\Rightarrow\hept{\begin{cases}b=12k\\a=9k\\c=16k\end{cases}}\)
Khi đó (1) <=> (12k)2 + (9k)2 + (16k2) = 481
=> 144k2 + 81k2 + 256k2 = 481
=> 481k2 = 481
=> k2 = 1
=> k = \(\pm1\)
Nếu k = 1 => c = 16 ; b = 9 ; a = 12
Nếu k = 2 => a = -12 ; b = -9 ; c = -16
Vậy các cặp số (a;b;c) thỏa mãn là (12;9;16) ; (-12 ; -9 ; - 16)
Giải thích các bước giải:
Vì số hạng thứ nhất với 1 phần 3 số thứ hai nhân với 1 phần 5 thì được hai kết quả bằng nhau nên số thứ 2 bằng 5/3 số thứ nhất
Số thứ nhất là: 976: 8.3= 366
Số thứ 2 là 876- 366= 510
Vậy số thứ nhất là 366, số thứ 2 là 510
Cho mình 5 sao và cảm ơn, câu trả lời hay nhất nhé, chúc bạn học tốt
số thứ nhất là 366
số thứ 2 là 510
chúc bn học tốt nha
Vì 2/3 = 3/4 suy ra 6/8 = 6/15 . 1150 : (8+15) = 50 . Số thứ nhất là : 8 nhân 50 = 400 . Số thứ hai là : 15 nhân 50 = 750
Ta có : \(\frac{3}{4}=\frac{2}{5}\)
Quy đồng 2 phân số , ta có : \(\frac{15}{20}=\frac{8}{20}\)
Hoán đổi theo sơ đồ ( ko hiểu thì hỏi sau nhé ) Ta có số thứ nhất 8 phần , số thứ 2 là 15 phần. ( Bằng mẫu số mới làm được nha )
Bạn vẽ sơ đồ nha
Tổng số phần = nhau là :
8 + 15 = 23 ( phần )
Số thứ 1 là :
( 1150 : 23 ) x 8 = 400
Số thứ 2 là:
1150 - 400 = 750
Đáp số : ST1 = 400
ST2 = 750
Gọi số thứ nhất là a ; số thứ hai là b ; số thứ 3 là c
Theo bài ra ta có :
a2 + b2 + c2 = 8125 (1)
\(1b=\frac{2}{5}a=\frac{3}{4}c\)(2)
Từ (2) ta có : \(\hept{\begin{cases}1b=\frac{2}{5}a\\\frac{2}{5}a=\frac{3}{4}c\end{cases}\Rightarrow\hept{\begin{cases}\frac{b}{\frac{2}{5}}=\frac{a}{1}\\\frac{a}{\frac{3}{4}}=\frac{c}{\frac{2}{5}}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{b}{\frac{2}{5}}=\frac{a}{1}\\\frac{a}{1}=\frac{c}{\frac{8}{15}}\end{cases}\Rightarrow}\frac{b}{\frac{2}{5}}}=\frac{a}{1}=\frac{c}{\frac{8}{15}}\)
Đặt \(\frac{b}{\frac{2}{5}}=\frac{a}{1}=\frac{c}{\frac{8}{15}}=k\)
\(\Rightarrow b=\frac{2}{5}k;a=k;c=\frac{8}{15}k\)(3)
Thay (3) vào (1) ta có :
\(\left(\frac{2}{5}k\right)^2+k^2+\left(\frac{8}{15}k\right)^2=8125\)
\(\Rightarrow\left(\frac{2}{5}\right)^2.k^2+k^2+\left(\frac{8}{15}\right)^2.k^2=8125\)
\(\Rightarrow\frac{4}{25}.k^2+k^2+\frac{64}{225}.k^2=8125\)
\(\Rightarrow k^2.\frac{13}{9}=8125\)
\(\Rightarrow k^2=5625\)
\(\Rightarrow k=\pm75\)
Nếu k = 75
=> \(\hept{\begin{cases}a=75.1=75\\b=75.\frac{2}{5}=30\\c=75.\frac{8}{15}=40\end{cases}}\)
Nếu k = - 75
=> \(\hept{\begin{cases}a=-75.1=-75\\b=-75.\frac{2}{5}=-30\\c=-75.\frac{8}{15}=-40\end{cases}}\)
Vậy các cặp 3 số (a;b;c) thỏa mãn là : (-75 ; - 30 ; - 40) ; (75;30;40)