Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số thứ nhất là a ; số thứ hai là b ; số thứ 3 là c
Theo bài ra ta có :
a2 + b2 + c2 = 8125 (1)
\(1b=\frac{2}{5}a=\frac{3}{4}c\)(2)
Từ (2) ta có : \(\hept{\begin{cases}1b=\frac{2}{5}a\\\frac{2}{5}a=\frac{3}{4}c\end{cases}\Rightarrow\hept{\begin{cases}\frac{b}{\frac{2}{5}}=\frac{a}{1}\\\frac{a}{\frac{3}{4}}=\frac{c}{\frac{2}{5}}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{b}{\frac{2}{5}}=\frac{a}{1}\\\frac{a}{1}=\frac{c}{\frac{8}{15}}\end{cases}\Rightarrow}\frac{b}{\frac{2}{5}}}=\frac{a}{1}=\frac{c}{\frac{8}{15}}\)
Đặt \(\frac{b}{\frac{2}{5}}=\frac{a}{1}=\frac{c}{\frac{8}{15}}=k\)
\(\Rightarrow b=\frac{2}{5}k;a=k;c=\frac{8}{15}k\)(3)
Thay (3) vào (1) ta có :
\(\left(\frac{2}{5}k\right)^2+k^2+\left(\frac{8}{15}k\right)^2=8125\)
\(\Rightarrow\left(\frac{2}{5}\right)^2.k^2+k^2+\left(\frac{8}{15}\right)^2.k^2=8125\)
\(\Rightarrow\frac{4}{25}.k^2+k^2+\frac{64}{225}.k^2=8125\)
\(\Rightarrow k^2.\frac{13}{9}=8125\)
\(\Rightarrow k^2=5625\)
\(\Rightarrow k=\pm75\)
Nếu k = 75
=> \(\hept{\begin{cases}a=75.1=75\\b=75.\frac{2}{5}=30\\c=75.\frac{8}{15}=40\end{cases}}\)
Nếu k = - 75
=> \(\hept{\begin{cases}a=-75.1=-75\\b=-75.\frac{2}{5}=-30\\c=-75.\frac{8}{15}=-40\end{cases}}\)
Vậy các cặp 3 số (a;b;c) thỏa mãn là : (-75 ; - 30 ; - 40) ; (75;30;40)
Bài 1 : Gọi số thứ nhất cần tìm là x,số thứ hai cần tìm là y,số thứ ba cần tìm là z. Theo đề bài ta có :
x2 + y2 + z2 = 8125
Mà \(y=\frac{2}{5}x\)=> \(5y=2x\)=> \(\frac{x}{5}=\frac{y}{2}\)(1)
\(y=\frac{3}{4}z\)=> 4y = 3z => \(\frac{y}{3}=\frac{z}{4}\)(2)
Từ (1) và (2) => \(\frac{x}{5}=\frac{y}{2};\frac{y}{3}=\frac{z}{4}\)
+) \(\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{6}\)
+) \(\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{6}=\frac{z}{8}\)
=> \(\frac{x}{15}=\frac{y}{6}=\frac{z}{8}\)
=> \(\frac{x^2}{15^2}=\frac{y^2}{6^2}=\frac{z^2}{8^2}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{15^2}=\frac{y^2}{6^2}=\frac{z^2}{8^2}=\frac{x^2+y^2+z^2}{15^2+6^2+8^2}=\frac{8125}{325}=25=5^2\)
=> x2 = 52 . 152 = 752 => x = \(\pm\)75
y2 = 52 . 62 = 302 => y = \(\pm\)30
z2 = 52 . 82 = 402 => z = \(\pm\)40
Bài 2 tự làm
đặt stn=1;sth=b,st3=c ta có a3+b3+c3 =481. (1)
Ta có: b=4/3.a (gt) => a=3/4.b (2)
b=3/4 .c (gt)=> c= 4/3 .b (3)
Thay (2,3) vào (1)
Ta có
(3/4.b)2 + b2 + (4/3 .b)2 =481
(9b2)/16 + b2+ (16b2)/9 = 481
(81b2+144b2+256b2) / 144 = 481
481.b2=481.144
b2=144
b2=122
b=12
=> a= 3/4 . 12 =9; b= 4/3 .12=16
Vậy a=9, b=12; c=16
Từ b2 = 122 suy ra 2 số b:
b = 12 hoặc b = -12.
Như vậy ngoài đáp số: a=9, b=12; c=16
Còn có đáp số: a=-9, b=-12; c=-16
Gọi ba số dương cần tìm là x , y , z
Theo đề bài ra ta có : x2 + y2 + z2
và y = 3.x/4 = 2.z/3
BCNN(3;2) = 6
suy ra : y . 1/6 = 1/6 . 3/4 .x = 1/6 . 2/3 . z
khi và chỉ khi : y/6 = x/8 = x/9
suy ra : y2/62 = x2/82 = z2/92 = y2 + x2 + z2/36 + 64 + 81= 181/181= 1
Từ y2/62 = 1 suy ra y2 = 62 suy ra y = 6
x2/82 = 1 suy ra x2 = 82 suy ra x = 8
z2/92 = 1 suy ra z2 = 92 suy ra z = 9
Vậy y = 6 ; x = 8 ; z = 9
Giải :
Hok tốt !!!