K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2019

\(\left(a+b+c\right)^3-a^3-\left(b^3+c^3\right)=\left(b+c\right)\left[\left(a+b+c\right)^2+a\left(a+b+c\right)+a^2\right]-\left(b+c\right)\left(b^2-bc+c^2\right)\)\(=\left(b+c\right)\left(3a^2+3ab+3bc+3ca\right)=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

29 tháng 8 2017

a(b3 - c3) + b(c- a3) + c(a- b3)

= a(b3 - c) + b( c3 - b3 + b3 - a3) + c(a3 - b3)

= a(b3 - c3) + b(c3 - b3) + b(b3 - a3) + c(a3 - b3)

= a(b3 - c3) - b(b3 - c3) - [b(a3 - b3) - c(a3- b3)]

= (b3 - c3)(a - b) - (a3- b3)(b - c)

= (b - c)(b2 + bc + c2)(a - b) - (a - b)(a2 + ab + b2)(b - c)

= (b - c)(a - b)(b2 + bc + c2 - a2 + ab - b2)

= (b - c)(a - b) [ (c2  - a2) + (bc - ab) ]

= (b - c)(a - b) [ (c - a)(c + a) + b(c - a) ]

= (b - c)(a -b) [ (c - a)(c + a + b) ]

= (a- b)(b - c)(c - a)(a + b + c)

21 tháng 7 2021

A= (a+b+c)3-a3-b3-c3

  = a3+b3+c3+3(a+b)(a+c)(b+c)-a3-b3-c3

  = 3(a+b)(a+c)(b+c)

8 tháng 2 2018

c) a3 – b3 + 2b – 2a = (a – b)(a2 + ab + b2) – 2(a – b)

=(a – b)( a2 + ab + b2 – 2)

26 tháng 1 2019

a) (a-b)(b-c)(a-c).

b) (a-b)(b-c)(a - c)(a + b + c).

20 tháng 9 2020

 .\(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)-2abc-a^3-b^3-c^3\)

=\(a\left(b^2-2bc+c^2-a^2\right)+b\left(a^2+2ac+c^2-b^2\right)+c\left(a^2-2ab+b^2-c^2\right)\)

=\(a\left[\left(b-c\right)^2-a^2\right]+b\left[\left(a+c\right)^2-b^2\right]+=c\left[\left(a-b^2\right)-c^2\right]\)

=\(a\left(c-b+a\right)\left(a+b-c\right)+b\left(a+c-b\right)\left(a+b+c\right)+c\left(a-b+c\right)\left(a-b-c\right)\)

=\(\left(a+c-b\right)\left[a\left(c-b+a\right)+b\left(a+b+c\right)+c\left(a-b-c\right)\right]\)

=\(\left(a+c-b\right)\left(b+a-c\right)\left(c+b-a\right)\)

16 tháng 3 2018

17 tháng 7 2021

a) \(x^4+2x^3-4x-4=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)

\(=\left(x^2+x\right)^2-\left(x+2\right)^2=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)

\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)

 

a) Ta có: \(x^4+2x^3-4x-4\)

\(=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)

\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)

\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)

\(=\left(x^2-2\right)\cdot\left(x^2+2x+2\right)\)

26 tháng 10 2021

a(b3 - c3) + b(c- a3) + c(a- b3)

= a(b3 - c) + b( c3 - b3 + b3 - a3) + c(a3 - b3)

= a(b3 - c3) + b(c3 - b3) + b(b3 - a3) + c(a3 - b3)

\(=\left[a\left(b^3-c^3\right)-b\left(b^3-c^3\right)\right]-\left[b\left(a^3-b^3\right)-c\left(a^3-b^3\right)\right]\)

= (b3 - c3)(a - b) - (a3- b3)(b - c)

= (b - c)(b2 + bc + c2)(a - b) - (a - b)(a2 + ab + b2)(b - c)

= (b - c)(a - b)(b2 + bc + c2 - a2 + ab - b2)

= (b - c)(a - b) [ (c2  - a2) + (bc - ab) ]

= (b - c)(a - b) [ (c - a)(c + a) + b(c - a) ]

= (b - c)(a -b) [ (c - a)(c + a + b) ]

 

= (a- b)(b - c)(c - a)(a + b + c)