Tìm nghiệm nguyên của phương trình 2x2+y2=2x2y2-xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình 1 ⇔ x + y 2 x - y = 0 ⇔ x = − y 2 x = y
Trường hợp 1: x = - y thay vào (2) ta được x 2 - 4 x + 3 = 0 ⇔ x = 1 x = 3
Suy ra hệ phương trình có hai nghiệm là (1; −1), (3; −3).
Trường hợp 2: 2 x = y thay vào (2) ta được - 5 x 2 + 17 x + 3 = 0 phương trình này không có nghiệm nguyên.
Vậy các cặp nghiệm (x; y) sao cho x, y đều là các số nguyên là (1; −1) và (3; −3).
Đáp án cần chọn là: C
\(x^5\) - 2\(x^4\) - (y2 + 3)\(x\) + 2y2 - 2 = 0
(\(x^5\) - 2\(x^4\))- (y2 + 3)\(x\) + 2.(y2 + 3) - 8 = 0
\(x^4\).(\(x\) - 2) - (y2 + 3).(\(x\) - 2) - 8 = 0
(\(x\) - 2).(\(x^4\) - y2 - 3) = 8
8 = 23; Ư(8) = {-8; - 4; -2; - 1; 1; 2; 4; 8}
Lập bảng ta có:
\(x-2\) | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
\(x\) | -6 | -2 | 0 | 1 | 3 | 4 | 6 | 10 |
\(x^4\) - y2 - 3 | -1 | -2 | -4 | -8 | 8 | 4 | 2 | 1 |
y | \(\pm\)\(\sqrt{1294}\) | \(\pm\)\(15\) | \(\pm\)1 | \(\pm\)\(\sqrt{6}\) | y2 = -10 (ktm) | \(\pm\)\(\sqrt{249}\) | \(\pm\)\(\sqrt{1291}\) | \(\pm\)\(\sqrt{9996}\) |
vì \(x\); y nguyên nên theo bảng trên ta có các cặp \(x\); y thỏa mãn đề bài là:
(\(x\); y) = (0; -1;); (0; 1)
<=>x^2+y^2-x-y-xy=0
<=>2x^2+2y^2-2x-2y-2xy=0
<=>(x-y)^2+(x-1)^2+(y-1)^2=2
mà 2=0+1+1=1+0+1=1+1+0
(phần này tách số 2 ra thành tổng 3 số chính phương)
Xét trường hợp 1:
(x-y)^2=0
(x-1)^2=1
(y-1)^2=1
Giải ra ta được x=2, y=2
Tương tự xét các trường hợp còn lại.
Kết quả: 5 nghiệm: (2;2) ; (1;0) ; (1;2) ; (0;1) ; (2;1)
Thân^^
x2 - xy + y2 = x - y
<=> x2 - xy + y2 - x + y = 0
<=> x ( x - y) + y2 - ( x - y) = 0
<=> (x-1)(x-y)y2 =0
Do \(2x^2+x+1>0;\forall x\) nên pt tương đương:
\(y^2+1=\dfrac{x+5}{2x^2+x+1}\)
Ta có: \(6-\dfrac{x+5}{2x^2+x+1}=\dfrac{12x^2+5x+1}{2x^2+x+1}=\dfrac{12\left(x+\dfrac{5}{24}\right)^2+\dfrac{23}{48}}{2\left(x+\dfrac{1}{4}\right)^2+\dfrac{7}{8}}>0\) ; \(\forall x\)
\(\Rightarrow\dfrac{x+5}{2x^2+x+1}< 6\Rightarrow y^2+1< 6\)
\(\Rightarrow y^2< 5\) \(\Rightarrow y^2=\left\{0;1;4\right\}\)
- Với \(y^2=0\Rightarrow y=0\Rightarrow2x^2+x+1=x+5\Rightarrow x^2=2\) (ko tồn tại x nguyên thỏa mãn) \(\Rightarrow\) loại
- Với \(y^2=1\Rightarrow2\left(2x^2+x+1\right)=x+5\)
\(\Leftrightarrow4x^2+x-3=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{3}{4}\left(loại\right)\end{matrix}\right.\)
- Với \(y^2=4\Rightarrow5\left(2x^2+x+1\right)=x+5\)
\(\Leftrightarrow10x^2+4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{2}{5}\left(loại\right)\end{matrix}\right.\)
Vậy pt có 4 cặp nghiệm nguyên:
\(\left(x;y\right)=\left(-1;-1\right);\left(-1;1\right);\left(0;-2\right);\left(0;2\right)\)
a)2x2+4x=19-3y2
⇔2x2+4x+2=21-3y2
⇔2(x+1)2=3(7-y2)Ta có 2(x+1)2⋮2⇒3(7-y2)⋮2
⇒7-y2⋮2
⇒y lẻ (1)
Ta lại có 2(x+1)2≥0
⇒3(7-y2)≥0
⇒7-y2≥0
⇒y2≤7
⇒y2∈{1;4} (2)
Từ (1),(2)⇒y2∈{1}
⇒y∈{-1;1}
Ta có y2=1⇒2(x+1)2=3(7-y2)=18⇒(x+1)2=9
⇒x+1=3 hoặc x+1=-3
⇒x=2 hoặc x=-4
Vậy {x,y}={(-1;2);(-1;-4);(1;2);(1;-4)}
Ta có \(2y^2⋮2\Rightarrow x^2\equiv1\left(mod2\right)\Rightarrow x^2\equiv1\left(mod4\right)\Rightarrow2y^2⋮4\Rightarrow y⋮2\Rightarrow x^2\equiv5\left(mod8\right)\) (vô lí).
Vậy pt vô nghiệm nguyên.
2: \(PT\Leftrightarrow3x^3+6x^2-12x+8=0\Leftrightarrow4x^3=\left(x-2\right)^3\Leftrightarrow\sqrt[3]{4}x=x-2\Leftrightarrow x=\dfrac{-2}{\sqrt[3]{4}-1}\).