K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2019

Phương trình  1 ⇔ x + y 2 x - y = 0 ⇔ x = − y 2 x = y

Trường hợp 1:  x = - y  thay vào (2) ta được  x 2 - 4 x + 3 = 0 ⇔ x = 1 x = 3

Suy ra hệ phương trình có hai nghiệm là (1; −1), (3; −3).

Trường hợp 2:  2 x = y  thay vào (2) ta được  - 5 x 2 + 17 x + 3 = 0  phương trình này không có nghiệm nguyên.

Vậy các cặp nghiệm (x; y) sao cho x, y đều là các số nguyên là (1; −1) và (3; −3).

Đáp án cần chọn là: C

10 tháng 5 2021
2 cái pt riêng nhà mng
28 tháng 11 2023

\(x^5\) - 2\(x^4\) - (y2 + 3)\(x\) + 2y2 - 2 = 0

(\(x^5\) - 2\(x^4\))- (y2 + 3)\(x\) + 2.(y2 + 3) - 8 = 0

\(x^4\).(\(x\) - 2) - (y2 + 3).(\(x\) - 2) - 8 = 0

(\(x\) - 2).(\(x^4\) - y2 - 3) = 8

8 = 23; Ư(8) = {-8; - 4; -2; - 1; 1; 2; 4; 8}

Lập bảng ta có:

\(x-2\) -8 -4 -2 -1 1 2 4 8
\(x\) -6 -2 0 1 3 4 6 10
\(x^4\) - y2 - 3 -1 -2 -4 -8 8 4 2 1
y  \(\pm\)\(\sqrt{1294}\) \(\pm\)\(15\) \(\pm\)1 \(\pm\)\(\sqrt{6}\) y2 = -10 (ktm) \(\pm\)\(\sqrt{249}\) \(\pm\)\(\sqrt{1291}\) \(\pm\)\(\sqrt{9996}\)

vì \(x\); y nguyên nên theo bảng trên ta có các cặp \(x\); y thỏa mãn đề bài là:

(\(x\); y) = (0; -1;); (0; 1)

 

14 tháng 9 2017

<=>x^2+y^2-x-y-xy=0 
<=>2x^2+2y^2-2x-2y-2xy=0 
<=>(x-y)^2+(x-1)^2+(y-1)^2=2 
mà 2=0+1+1=1+0+1=1+1+0 
(phần này tách số 2 ra thành tổng 3 số chính phương) 
Xét trường hợp 1: 
(x-y)^2=0 
(x-1)^2=1 
(y-1)^2=1 
Giải ra ta được x=2, y=2 
Tương tự xét các trường hợp còn lại. 
Kết quả: 5 nghiệm: (2;2) ; (1;0) ; (1;2) ; (0;1) ; (2;1) 
Thân^^

14 tháng 9 2017

x2 - xy + y2 = x - y

<=> x2 - xy + y2 - x + y = 0

<=> x ( x - y) + y2 - ( x - y) = 0

<=> (x-1)(x-y)y2 =0

NV
9 tháng 5 2021

Do \(2x^2+x+1>0;\forall x\) nên pt tương đương:

\(y^2+1=\dfrac{x+5}{2x^2+x+1}\)

Ta có: \(6-\dfrac{x+5}{2x^2+x+1}=\dfrac{12x^2+5x+1}{2x^2+x+1}=\dfrac{12\left(x+\dfrac{5}{24}\right)^2+\dfrac{23}{48}}{2\left(x+\dfrac{1}{4}\right)^2+\dfrac{7}{8}}>0\) ; \(\forall x\)

\(\Rightarrow\dfrac{x+5}{2x^2+x+1}< 6\Rightarrow y^2+1< 6\)

\(\Rightarrow y^2< 5\) \(\Rightarrow y^2=\left\{0;1;4\right\}\)

- Với \(y^2=0\Rightarrow y=0\Rightarrow2x^2+x+1=x+5\Rightarrow x^2=2\) (ko tồn tại x nguyên thỏa mãn) \(\Rightarrow\) loại

- Với \(y^2=1\Rightarrow2\left(2x^2+x+1\right)=x+5\)

\(\Leftrightarrow4x^2+x-3=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{3}{4}\left(loại\right)\end{matrix}\right.\)

- Với \(y^2=4\Rightarrow5\left(2x^2+x+1\right)=x+5\)

\(\Leftrightarrow10x^2+4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{2}{5}\left(loại\right)\end{matrix}\right.\)

Vậy pt có 4 cặp nghiệm nguyên: 

\(\left(x;y\right)=\left(-1;-1\right);\left(-1;1\right);\left(0;-2\right);\left(0;2\right)\)

21 tháng 8 2021

a)2x^2+xy-y^2-x+2y-1

=2x^2+xy-x-(y-1)^2

=2x^2+x(y-1)-(y-1)^2

=2a^2+ab-b^2         với a=x,b=y-1

=2a^2+2ab-ab-b^2

=(2a-b)(a+b)

=(2x-y+1)(x+y-1)

2 tháng 8 2021

a)2x2+4x=19-3y2

⇔2x2+4x+2=21-3y2

⇔2(x+1)2=3(7-y2)Ta có 2(x+1)2⋮2⇒3(7-y2)⋮2

⇒7-y2⋮2

⇒y lẻ (1)

Ta lại có 2(x+1)2≥0

⇒3(7-y2)≥0

⇒7-y2≥0

⇒y2≤7

⇒y2∈{1;4} (2)

Từ (1),(2)⇒y2∈{1}

⇒y∈{-1;1}

Ta có y2=1⇒2(x+1)2=3(7-y2)=18⇒(x+1)2=9

⇒x+1=3 hoặc x+1=-3

⇒x=2 hoặc x=-4

Vậy {x,y}={(-1;2);(-1;-4);(1;2);(1;-4)}

24 tháng 6 2021

Cảm ơn e gái nha =))

9 tháng 1 2021

Ta có \(2y^2⋮2\Rightarrow x^2\equiv1\left(mod2\right)\Rightarrow x^2\equiv1\left(mod4\right)\Rightarrow2y^2⋮4\Rightarrow y⋮2\Rightarrow x^2\equiv5\left(mod8\right)\) (vô lí).

Vậy pt vô nghiệm nguyên.

9 tháng 1 2021

2: \(PT\Leftrightarrow3x^3+6x^2-12x+8=0\Leftrightarrow4x^3=\left(x-2\right)^3\Leftrightarrow\sqrt[3]{4}x=x-2\Leftrightarrow x=\dfrac{-2}{\sqrt[3]{4}-1}\).