K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2021

\(\frac{3x-7}{21}-\frac{x\left(x-2\right)}{7}\le\frac{x-2}{3}-\frac{x\left(x+1\right)}{7}\)

\(\Leftrightarrow\frac{3x-7}{21}-\frac{3x\left(x-2\right)}{21}\le\frac{7x-14-3x\left(x+1\right)}{21}\)

\(\Leftrightarrow3x-7-3x^2+6x\le7x-14-3x^2-3x\)

\(\Leftrightarrow9x-7\le4x-14\Leftrightarrow5x\le-7\Leftrightarrow x\le-\frac{7}{5}\)

vậy tập nghiệm của bft là S = { x | x =< -7/5 } 

13 tháng 5 2021

\(\frac{3x-7}{21}-\frac{x\left(x-2\right)}{7}\le\frac{x-2}{3}-\frac{x\left(x+1\right)}{7}\)

\(< =>\frac{3x-7}{21}-\frac{3x\left(x-2\right)}{21}\le\frac{7\left(x-2\right)}{21}-\frac{3x\left(x+1\right)}{21}\)

\(< =>3x-7-3x^2+6x\le7x-14-3x^2+3x\)

\(< =>-3x^2+3x+9x-7-10x+14\le0\)

\(< =>-x-7\le0\)

\(< =>x+7\ge0< =>x\ge-7\)

vậy với x >= -7 thì ....

26 tháng 11 2016

a)\(\frac{x^2+4}{x^2}+\frac{4}{x+1}\left(\frac{1}{x}+1\right)\)

\(=\frac{x^2+4}{x^2}+\frac{4}{x+1}.\frac{x+1}{x}\)

\(=\frac{x^2+4}{x^2}+\frac{4}{x}\)

\(=\frac{x^2+4x+4}{x^2}\)

\(\left(\frac{x+2}{x}\right)^2\)

=>phép chia = 1 với mọi x # 0 và x#-1

b)Cm tương tự

26 tháng 11 2016

khó quá

3 tháng 3 2020

\(ĐKXĐ:\hept{\begin{cases}x\ne\pm2\\x\ne0\end{cases}}\)

a) \(P=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(\Leftrightarrow P=\left(\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right):\frac{x^2-4+10-x^2}{x-2}\)

\(\Leftrightarrow P=\frac{x^2-2x\left(x+2\right)+x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}:\frac{6}{x-2}\)

\(\Leftrightarrow P=\frac{x^2-2x^2-4x+x^2-2x}{x\left(x-2\right)\left(x+2\right)}\cdot\frac{x-2}{6}\)

\(\Leftrightarrow P=\frac{-6x}{6x\left(x+2\right)}\)

\(\Leftrightarrow P=\frac{-1}{x+2}\)

b) Khi \(\left|x\right|=\frac{3}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-\frac{3}{4}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}P=-\frac{1}{\frac{3}{4}+2}=-\frac{4}{11}\\P=-\frac{1}{-\frac{3}{4}+2}=-\frac{4}{5}\end{cases}}\)

c) Để P = 7

\(\Leftrightarrow-\frac{1}{x+2}=7\)

\(\Leftrightarrow7\left(x+2\right)=-1\)

\(\Leftrightarrow7x+14=-1\)

\(\Leftrightarrow7x=-15\)

\(\Leftrightarrow x=-\frac{15}{7}\)

Vậy để \(P=7\Leftrightarrow x=-\frac{15}{7}\)

d) Để \(P\inℤ\)

\(\Leftrightarrow1⋮x+2\)

\(\Leftrightarrow x+2\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Leftrightarrow x\in\left\{-3;-1\right\}\)

Vậy để  \(P\inℤ\Leftrightarrow x\in\left\{-3;-1\right\}\)

ĐK: \(x-9\ne0\Rightarrow x\ne9\)

\(\sqrt{x}\ge0\Rightarrow x\ge0\)

\(x+\sqrt{x}-6\ne0\Rightarrow x+3\sqrt{x}-2\sqrt{x}-6\ne0\Rightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\ne0\)

\(\Rightarrow\sqrt{x}-2\ne0\Rightarrow\sqrt{x}\ne2\Rightarrow x\ne4\)

ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)

\(A=\left(\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{1}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\left(\frac{1+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)

\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\frac{1+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4\sqrt{x}-12}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-3\right)}\)

2, Với \(x=\frac{25}{16}\)\(\Rightarrow\sqrt{x}=\sqrt{\frac{25}{16}}=\frac{5}{4}\)

\(A=\frac{\frac{5}{4}\left(\frac{5}{4}-2\right)}{4\left(\frac{5}{4}-3\right)}=\frac{5}{4}.\left(-\frac{3}{4}\right):4\left(-\frac{7}{4}\right)=-\frac{15}{16}:-7=\frac{15}{112}\)

\(\orbr{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\end{cases}}\)\(\orbr{\begin{cases}\orbr{\begin{cases}\sqrt{x}-2< 0\\\sqrt{x}-3>0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}< 2\\\sqrt{x}>3\end{cases}}\Rightarrow\orbr{\begin{cases}x< 4\\x>9\end{cases}}}\\\orbr{\begin{cases}\sqrt{x}-2>0\\\sqrt{x}-3< 0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}>2\\\sqrt{x}< 3\end{cases}\Rightarrow\orbr{\begin{cases}x>4\\x< 9\end{cases}}}}\end{cases}}\)

10 tháng 2 2017

\(\frac{x+1}{\left(x+2\right)\left(x+3\right)}=\frac{a\left(x+3\right)+b\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}=\)\(\frac{\left(a+b\right)x+3a+2b}{\left(x+2\right)\left(x+3\right)}\)

\(\Leftrightarrow\hept{\begin{cases}a+b=1\\3a+2b=1\end{cases}\Leftrightarrow}\)\(\hept{\begin{cases}a=-1\\b=2\end{cases}}\)

10 tháng 2 2017

ko bit

1. Cho tam giác ABC có AB = 6, AC = 8, Bc =10 và góc A = 5B2. BIết \(\frac{4x}{6y}=\frac{2x+8}{3y+11}.\) Vậy \(\frac{x}{y}\)?3.Cho hàm số f(x) = 1-5x. Tìm m<0 biết f(m^2) = -19 ?4. Tìm số tự nhiên a nhỏ nhất để 3^2014 + 3^a chia hết cho 10 ?5. Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\); a+b+c khác 0 và a = 2014. Khi đó \(a-\frac{2}{19}b+\frac{5}{53}c?\)6. Cho tam giác ABC nhọn. Kẻ AH vuông góc với BC. Tính chu vi tam giác ABC biết AH =12, BH = 5,...
Đọc tiếp

1. Cho tam giác ABC có AB = 6, AC = 8, Bc =10 và góc A = 5B

2. BIết \(\frac{4x}{6y}=\frac{2x+8}{3y+11}.\) Vậy \(\frac{x}{y}\)?

3.Cho hàm số f(x) = 1-5x. Tìm m<0 biết f(m^2) = -19 ?
4. Tìm số tự nhiên a nhỏ nhất để 3^2014 + 3^a chia hết cho 10 ?

5. Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\); a+b+c khác 0 và a = 2014. Khi đó \(a-\frac{2}{19}b+\frac{5}{53}c?\)

6. Cho tam giác ABC nhọn. Kẻ AH vuông góc với BC. Tính chu vi tam giác ABC biết AH =12, BH = 5, CH = 16 ?
7. Hai lớp 7A và 7B có tất cả 65 học sinh. Tìm số học sinh của mỗi lớp biết rằng số học sinh của 2 lớp lần lượt tỉ lệ với 6 và 7 ?
8. Cho tam giác ABC cân tại A.  Đường cao AH bằng một nữa BC. Vậy góc BAC bằng bao nhiêu độ ?

9.Tìm x,y,z biết \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)?

10. Cho a,b,c là các số khác 0 thõa mãn b^2 = ac. Khi đó ta được \(\frac{a}{b}=\left(\frac{a+2014b}{b+2014c}\right)^n\). Vậy n bằng bao nhiêu ?

11. Tìm x biết 2006 x giá trị tuyệt đối của x-1 + \(\left(x-1\right)^2\)=2005 x giá trị tuyệt đối của 1 - x ? Tập hợp các giá trị của x thõa mãn là {...} ?

12. Rút gọn \(\frac{\left(1+2+3+...+99+100\right).\left(\frac{1}{4}+\frac{1}{6}-\frac{1}{2}\right).\left(63\times1,2-21\times3.6+1\right)}{1-2+3-4+5-6+...+99-100}\)

13. Biết \(\frac{x}{2}=\frac{-y}{3}\)Khi đó giá trị tuyệt đối của x+2 phần giá trị tuyệt đối của 3-y bằng ?

14. Rút gọn \(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2012+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)Ta được A bằng bao nhiêu ?
 

9
3 tháng 3 2016

câu 2: 12/11,cau 3: -2,0,1992,54,30;35,90,1/2;1/2;-1/2,101/12,1/2014

Câu 1 hỏi gì vậy bạn?

19 tháng 1 2019

\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{1}{200^2}+\frac{1}{200^2}+...+\frac{1}{200^2}\left(100\text{số hạng}\right)\)

\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{100}{200^2}< \frac{100}{200}=\frac{1}{2}\)

\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{1}{2}\left(đpcm\right)\)

20 tháng 1 2019

bài tớ sai rồi -_-' chưa lại hộ

\(=\frac{1}{2^2}.\left(\frac{1}{1}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)< \frac{1}{2^2}.\left(\frac{1}{1}+\frac{1}{1.2}+...+\frac{1}{99.100}\right)\)

\(=\frac{1}{2^2}.\left(1+1-\frac{1}{100}\right)=\frac{1}{4}.2-\frac{1}{400}=\frac{1}{2}-\frac{1}{400}< \frac{1}{2}\)

12 tháng 11 2019

a) Giá trị của \(\frac{x}{x^2-4}+\frac{3}{\left(x+2\right)^2}\) được xác định

\(\Leftrightarrow x^2-4\ne0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\ne0\)

\(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\)

\(\Leftrightarrow x\ne\pm2\)

b) Giá trị của biểu thức bằng 0

\(\Leftrightarrow\frac{x}{x^2-4}+\frac{3}{\left(x+2\right)^2}=0\)

\(\Leftrightarrow\frac{x}{\left(x+2\right)\left(x-2\right)}+\frac{3}{\left(x+2\right)^2}=0\)

\(\Leftrightarrow\frac{x\left(x+2\right)+3\left(x-2\right)}{\left(x-2\right)\left(x+2\right)^2}=0\)

\(\Leftrightarrow x^2+2x+3x-6=0\)

\(\Leftrightarrow x^2+6x-x-6=0\)

\(\Leftrightarrow x\left(x+6\right)-\left(x+6\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+6=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-6\\x=1\end{cases}}}\)( Thỏa mãn điều kiện xác định )

Vậy ......................