Nếu \(x-\frac{1}{x}=3\) thì giá trị của \(\frac{21}{2}+\frac{3}{6}x^2+\frac{3}{2}x\) bằng bao nhiêu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3x-7}{21}-\frac{x\left(x-2\right)}{7}\le\frac{x-2}{3}-\frac{x\left(x+1\right)}{7}\)
\(\Leftrightarrow\frac{3x-7}{21}-\frac{3x\left(x-2\right)}{21}\le\frac{7x-14-3x\left(x+1\right)}{21}\)
\(\Leftrightarrow3x-7-3x^2+6x\le7x-14-3x^2-3x\)
\(\Leftrightarrow9x-7\le4x-14\Leftrightarrow5x\le-7\Leftrightarrow x\le-\frac{7}{5}\)
vậy tập nghiệm của bft là S = { x | x =< -7/5 }
\(\frac{3x-7}{21}-\frac{x\left(x-2\right)}{7}\le\frac{x-2}{3}-\frac{x\left(x+1\right)}{7}\)
\(< =>\frac{3x-7}{21}-\frac{3x\left(x-2\right)}{21}\le\frac{7\left(x-2\right)}{21}-\frac{3x\left(x+1\right)}{21}\)
\(< =>3x-7-3x^2+6x\le7x-14-3x^2+3x\)
\(< =>-3x^2+3x+9x-7-10x+14\le0\)
\(< =>-x-7\le0\)
\(< =>x+7\ge0< =>x\ge-7\)
vậy với x >= -7 thì ....
a)\(\frac{x^2+4}{x^2}+\frac{4}{x+1}\left(\frac{1}{x}+1\right)\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x+1}.\frac{x+1}{x}\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x}\)
\(=\frac{x^2+4x+4}{x^2}\)
\(\left(\frac{x+2}{x}\right)^2\)
=>phép chia = 1 với mọi x # 0 và x#-1
b)Cm tương tự
\(ĐKXĐ:\hept{\begin{cases}x\ne\pm2\\x\ne0\end{cases}}\)
a) \(P=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(\Leftrightarrow P=\left(\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right):\frac{x^2-4+10-x^2}{x-2}\)
\(\Leftrightarrow P=\frac{x^2-2x\left(x+2\right)+x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}:\frac{6}{x-2}\)
\(\Leftrightarrow P=\frac{x^2-2x^2-4x+x^2-2x}{x\left(x-2\right)\left(x+2\right)}\cdot\frac{x-2}{6}\)
\(\Leftrightarrow P=\frac{-6x}{6x\left(x+2\right)}\)
\(\Leftrightarrow P=\frac{-1}{x+2}\)
b) Khi \(\left|x\right|=\frac{3}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-\frac{3}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}P=-\frac{1}{\frac{3}{4}+2}=-\frac{4}{11}\\P=-\frac{1}{-\frac{3}{4}+2}=-\frac{4}{5}\end{cases}}\)
c) Để P = 7
\(\Leftrightarrow-\frac{1}{x+2}=7\)
\(\Leftrightarrow7\left(x+2\right)=-1\)
\(\Leftrightarrow7x+14=-1\)
\(\Leftrightarrow7x=-15\)
\(\Leftrightarrow x=-\frac{15}{7}\)
Vậy để \(P=7\Leftrightarrow x=-\frac{15}{7}\)
d) Để \(P\inℤ\)
\(\Leftrightarrow1⋮x+2\)
\(\Leftrightarrow x+2\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Leftrightarrow x\in\left\{-3;-1\right\}\)
Vậy để \(P\inℤ\Leftrightarrow x\in\left\{-3;-1\right\}\)
ĐK: \(x-9\ne0\Rightarrow x\ne9\)
\(\sqrt{x}\ge0\Rightarrow x\ge0\)
\(x+\sqrt{x}-6\ne0\Rightarrow x+3\sqrt{x}-2\sqrt{x}-6\ne0\Rightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\ne0\)
\(\Rightarrow\sqrt{x}-2\ne0\Rightarrow\sqrt{x}\ne2\Rightarrow x\ne4\)
ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)
\(A=\left(\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{1}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\left(\frac{1+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\frac{1+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4\sqrt{x}-12}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-3\right)}\)
2, Với \(x=\frac{25}{16}\)\(\Rightarrow\sqrt{x}=\sqrt{\frac{25}{16}}=\frac{5}{4}\)
\(A=\frac{\frac{5}{4}\left(\frac{5}{4}-2\right)}{4\left(\frac{5}{4}-3\right)}=\frac{5}{4}.\left(-\frac{3}{4}\right):4\left(-\frac{7}{4}\right)=-\frac{15}{16}:-7=\frac{15}{112}\)
\(\orbr{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\end{cases}}\)\(\orbr{\begin{cases}\orbr{\begin{cases}\sqrt{x}-2< 0\\\sqrt{x}-3>0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}< 2\\\sqrt{x}>3\end{cases}}\Rightarrow\orbr{\begin{cases}x< 4\\x>9\end{cases}}}\\\orbr{\begin{cases}\sqrt{x}-2>0\\\sqrt{x}-3< 0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}>2\\\sqrt{x}< 3\end{cases}\Rightarrow\orbr{\begin{cases}x>4\\x< 9\end{cases}}}}\end{cases}}\)
\(\frac{x+1}{\left(x+2\right)\left(x+3\right)}=\frac{a\left(x+3\right)+b\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}=\)\(\frac{\left(a+b\right)x+3a+2b}{\left(x+2\right)\left(x+3\right)}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=1\\3a+2b=1\end{cases}\Leftrightarrow}\)\(\hept{\begin{cases}a=-1\\b=2\end{cases}}\)
\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{1}{200^2}+\frac{1}{200^2}+...+\frac{1}{200^2}\left(100\text{số hạng}\right)\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{100}{200^2}< \frac{100}{200}=\frac{1}{2}\)
\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{1}{2}\left(đpcm\right)\)
bài tớ sai rồi -_-' chưa lại hộ
\(=\frac{1}{2^2}.\left(\frac{1}{1}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)< \frac{1}{2^2}.\left(\frac{1}{1}+\frac{1}{1.2}+...+\frac{1}{99.100}\right)\)
\(=\frac{1}{2^2}.\left(1+1-\frac{1}{100}\right)=\frac{1}{4}.2-\frac{1}{400}=\frac{1}{2}-\frac{1}{400}< \frac{1}{2}\)
a) Giá trị của \(\frac{x}{x^2-4}+\frac{3}{\left(x+2\right)^2}\) được xác định
\(\Leftrightarrow x^2-4\ne0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\)
\(\Leftrightarrow x\ne\pm2\)
b) Giá trị của biểu thức bằng 0
\(\Leftrightarrow\frac{x}{x^2-4}+\frac{3}{\left(x+2\right)^2}=0\)
\(\Leftrightarrow\frac{x}{\left(x+2\right)\left(x-2\right)}+\frac{3}{\left(x+2\right)^2}=0\)
\(\Leftrightarrow\frac{x\left(x+2\right)+3\left(x-2\right)}{\left(x-2\right)\left(x+2\right)^2}=0\)
\(\Leftrightarrow x^2+2x+3x-6=0\)
\(\Leftrightarrow x^2+6x-x-6=0\)
\(\Leftrightarrow x\left(x+6\right)-\left(x+6\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+6=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-6\\x=1\end{cases}}}\)( Thỏa mãn điều kiện xác định )
Vậy ......................