K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2019

A B C M N H D E F I

Gọi F là giao điểm của AD và BC, I là giao điểm của AH và NE. Áp dụng định lí Ceva với tam giác ABc và chú ý MC = MA, ta có:

\(1=\frac{NA}{NB}.\frac{FB}{FC}.\frac{MC}{MA}=\frac{NA}{NB}.\frac{FB}{FC}.1\)

Do đó \(\frac{AN}{BN}=\frac{CF}{BF}\) (1)

Theo định lí Thales đảo thì NF // AC

Từ (1) theo t/c tỉ lệ thức:

\(\frac{AN}{AB}=\frac{AN}{AN+BN}=\frac{CF}{CF+BF}=\frac{CF}{CB}\left(2\right)\)

Áp dụng định lí Menelaus cho các tam giác BEN và BEF, ta có:

\(\frac{IE}{IN}.\frac{AN}{AB}.\frac{HB}{HE}=1=\frac{DE}{DF}.\frac{CF}{CB}.\frac{HB}{HE}\left(3\right)\)

Từ (2) và (3) suy ra \(\frac{IE}{IN}=\frac{DE}{DF}\)

Do đó, theo định lí Thales đảo, NF // ID (4)

Từ (2) và (4) với chú ý AC vuông góc AN, suy ra ID vuông góc AN.

Kết hợp ND \(\perp\) AI => AD \(\perp\)NI.

Do vậy ^NEA = 90o

22 tháng 2 2022

đừng nói như vậy mà khocroi

Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE
Do đó: ΔABD=ΔACE

Suy ra: AD=AE

Xét ΔDMB vuông tại M và ΔENC vuông tại N có

DB=EC

\(\widehat{D}=\widehat{E}\)

Do đó: ΔDMB=ΔENC

Suy ra: \(\widehat{DBM}=\widehat{ECN}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

=>ΔOBC cân tại O

=>OB=OC

hay O nằm trên đường trung trực của BC(1)

Ta có:AB=AC

nên A nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AO là đường trung trực của BC

=>AO⊥BC

=>AO⊥DE

Ta có: ΔADE cân tại A

mà AO là đường cao

nên AO là phân giác

18 tháng 12 2021

a: Xét ΔABD và ΔECD có 

DA=DE

\(\widehat{ADB}=\widehat{EDC}\)

DB=DC

Do đó: ΔABD=ΔECD

18 tháng 12 2021

a: Xét ΔABD và ΔECD có

DA=DE

\(\widehat{ADB}=\widehat{EDC}\)

DB=DC

Do đó: ΔABD=ΔECD

18 tháng 12 2021

?

18 tháng 12 2021

a: Xét ΔABD và ΔECD có 

DA=DE

\(\widehat{ADB}=\widehat{EDC}\)

DB=DC

Do đó: ΔABD=ΔECD

18 tháng 12 2021

câu a,b,c đi

1 tháng 3 2019

AI NHANH MIK CHO 3  NHA

1 tháng 3 2019

 tự kẻ hình :

a, tam giác ABC cân tại A (gt)

=> AB = AC (đn)         (1)

     góc ABC = góc ACB (đl)

góc ABC + góc ABM = 180 (kb)

góc ACB + góc ACN = 180 (kb)

=> góc ABM = góc ACN          (2)

xét tam giác ABM  và tam giác ACN có : BM = CN (gt) và (1); (2)

=> tam giác ABM = tam giác ACN (c-g-c)

=> MA = NA (đn)

=> tam giác AMN cân tại A (đn)

b, xét tam giác HBM và tam giác KCN có : MB = CN (gt)

góc M = góc N do tam giác AMN cân (câu a)

góc MHB = góc NKC = 90 do ...

=> tam giác HBM = tam giác KCN (ch - gn)

=> HB = CK (đn)

c, có AM = AN (Câu a)

AM = AH + HM

AN = AK + KN 

HM = KN do tam giác HBM = tam giác KCN (câu b)

=> HM = KN 

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

b: Xét ΔABM và ΔACN có 

AB=AC
\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó;ΔABM=ΔACN

Suy ra: \(\widehat{M}=\widehat{N}\)

Xét ΔEBM vuông tại E và ΔFCN vuông tại F có

BM=CN

\(\widehat{M}=\widehat{N}\)

Do đó: ΔEBM=ΔFCN

Suy ra: \(\widehat{EBM}=\widehat{FCN}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

=>IB=IC

mà AB=AC

và HB=HC

nên A,H,I thẳng hàng