Cho tam giác ABC vuông tại A, đường trung tuyến BM. Lấy N nằm giữa A và B. Kẻ AH vuông góc CN tại H. Gọi D là giải điểm của BM và CN. Gọi E là giao điểm của AD và BH. Tính số đo góc NEA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
Xét ΔDMB vuông tại M và ΔENC vuông tại N có
DB=EC
\(\widehat{D}=\widehat{E}\)
Do đó: ΔDMB=ΔENC
Suy ra: \(\widehat{DBM}=\widehat{ECN}\)
=>\(\widehat{OBC}=\widehat{OCB}\)
=>ΔOBC cân tại O
=>OB=OC
hay O nằm trên đường trung trực của BC(1)
Ta có:AB=AC
nên A nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AO là đường trung trực của BC
=>AO⊥BC
=>AO⊥DE
Ta có: ΔADE cân tại A
mà AO là đường cao
nên AO là phân giác
a: Xét ΔABD và ΔECD có
DA=DE
\(\widehat{ADB}=\widehat{EDC}\)
DB=DC
Do đó: ΔABD=ΔECD
a: Xét ΔABD và ΔECD có
DA=DE
\(\widehat{ADB}=\widehat{EDC}\)
DB=DC
Do đó: ΔABD=ΔECD
a: Xét ΔABD và ΔECD có
DA=DE
\(\widehat{ADB}=\widehat{EDC}\)
DB=DC
Do đó: ΔABD=ΔECD
tự kẻ hình :
a, tam giác ABC cân tại A (gt)
=> AB = AC (đn) (1)
góc ABC = góc ACB (đl)
góc ABC + góc ABM = 180 (kb)
góc ACB + góc ACN = 180 (kb)
=> góc ABM = góc ACN (2)
xét tam giác ABM và tam giác ACN có : BM = CN (gt) và (1); (2)
=> tam giác ABM = tam giác ACN (c-g-c)
=> MA = NA (đn)
=> tam giác AMN cân tại A (đn)
b, xét tam giác HBM và tam giác KCN có : MB = CN (gt)
góc M = góc N do tam giác AMN cân (câu a)
góc MHB = góc NKC = 90 do ...
=> tam giác HBM = tam giác KCN (ch - gn)
=> HB = CK (đn)
c, có AM = AN (Câu a)
AM = AH + HM
AN = AK + KN
HM = KN do tam giác HBM = tam giác KCN (câu b)
=> HM = KN
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
b: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó;ΔABM=ΔACN
Suy ra: \(\widehat{M}=\widehat{N}\)
Xét ΔEBM vuông tại E và ΔFCN vuông tại F có
BM=CN
\(\widehat{M}=\widehat{N}\)
Do đó: ΔEBM=ΔFCN
Suy ra: \(\widehat{EBM}=\widehat{FCN}\)
=>\(\widehat{IBC}=\widehat{ICB}\)
=>ΔIBC cân tại I
=>IB=IC
mà AB=AC
và HB=HC
nên A,H,I thẳng hàng
Gọi F là giao điểm của AD và BC, I là giao điểm của AH và NE. Áp dụng định lí Ceva với tam giác ABc và chú ý MC = MA, ta có:
\(1=\frac{NA}{NB}.\frac{FB}{FC}.\frac{MC}{MA}=\frac{NA}{NB}.\frac{FB}{FC}.1\)
Do đó \(\frac{AN}{BN}=\frac{CF}{BF}\) (1)
Theo định lí Thales đảo thì NF // AC
Từ (1) theo t/c tỉ lệ thức:
\(\frac{AN}{AB}=\frac{AN}{AN+BN}=\frac{CF}{CF+BF}=\frac{CF}{CB}\left(2\right)\)
Áp dụng định lí Menelaus cho các tam giác BEN và BEF, ta có:
\(\frac{IE}{IN}.\frac{AN}{AB}.\frac{HB}{HE}=1=\frac{DE}{DF}.\frac{CF}{CB}.\frac{HB}{HE}\left(3\right)\)
Từ (2) và (3) suy ra \(\frac{IE}{IN}=\frac{DE}{DF}\)
Do đó, theo định lí Thales đảo, NF // ID (4)
Từ (2) và (4) với chú ý AC vuông góc AN, suy ra ID vuông góc AN.
Kết hợp ND \(\perp\) AI => AD \(\perp\)NI.
Do vậy ^NEA = 90o