K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 9 2019

Phương trình có dạng: \(\left(x-4\right)\left|x-2\right|=-m\)

Vẽ đồ thị hàm số \(y=\left(x-4\right)\left(x-2\right)=x^2-6x+8\) với phần \(x< 2\) lấy đối xứng qua trục hoành sẽ được đồ thị \(y=\left(x-4\right)\left|x-2\right|\)

Phác thảo như sau:

Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Nhìn vào đồ thị, ta biện luận được:

- Nếu \(-m< -1\Rightarrow m>1\) phương trình có 1 nghiệm duy nhất

- Nếu \(\left[{}\begin{matrix}-m=-1\\-m=0\end{matrix}\right.\) hay \(\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\) thì pt có 2 nghiệm

- Nếu \(-1< -m< 0\) hay \(0< m< 1\) thì pt có 3 nghiệm pb

TH1: m=-2

Phương trình sẽ trở thành:

\(\left(-2+2\right)x^2-2\left(-2-1\right)x+3-\left(-2\right)=0\)

=>6x+5=0

=>x=-5/6

TH2: m<>-2

\(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(m+2\right)\left(3-m\right)\)

\(=4\left(m^2-2m+1\right)+4\left(m^2-m-6\right)\)

\(=4\left(2m^2-3m-5\right)\)

\(=4\left(2m-5\right)\left(m+1\right)\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

=>4(2m-5)(m+1)>0

=>(2m-5)(m+1)>0

=>\(\left[{}\begin{matrix}m>\dfrac{5}{2}\\m< -1\end{matrix}\right.\)

Để phương trình có nghiệm kép thì Δ=0

=>4(2m-5)(m+1)=0

=>(2m-5)(m+1)=0

=>\(\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=-1\end{matrix}\right.\)

Để phương trình vô nghiệm thì Δ<0

=>(2m-5)(m+1)<0

=>\(-1< m< \dfrac{5}{2}\)

26 tháng 11 2021

Với \(m=-1\Leftrightarrow4x+1=0\Leftrightarrow x=-\dfrac{1}{4}\)

Với \(m=1\Leftrightarrow1=0\Leftrightarrow x\in\varnothing\)

Với \(m\ne\pm1\)

\(\Delta=4\left(m-1\right)^2-4\left(m^2+1\right)\\ \Delta=4m^2-8m+4-4m^2-4\\ \Delta=-8m\)

PT vô nghiệm \(\Leftrightarrow-8m< 0\Leftrightarrow m>0\)

PT có nghiệm kép \(\Leftrightarrow-8m=0\Leftrightarrow m=0\)

Khi đó \(x=\dfrac{2\left(m-1\right)}{2\left(m^2-1\right)}=\dfrac{1}{m+1}\)

PT có 2 nghiệm phân biệt \(\Leftrightarrow-8m>0\Leftrightarrow m< 0\)

Khi đó \(\left[{}\begin{matrix}x_1=\dfrac{2\left(m-1\right)-\sqrt{-8m}}{2\left(m^2-1\right)}\\x_2=\dfrac{2\left(m-1\right)+\sqrt{-8m}}{2\left(m^2+1\right)}\end{matrix}\right.\)

Bài 2: 

a: \(\Leftrightarrow\left(x^2-3x+2\right)\left(x^2-3x+3\right)=0\)

=>x^2-3x+2=0

=>x=2 hoặc x=1

b: \(\Leftrightarrow\left(\left|x\right|\right)^2-\left|x\right|+m=0\)

Để phương trình có nghiệm thì \(\text{Δ}>=0\)

=>1-4m>=0

=>m<=1/4

Để phương trình vô nghiệm thì Δ<0

=>m>1/4

c: TH1: m=1

=>-2x+2=0

=>x=1

TH2: m<>1

\(\text{Δ}=\left(-2\right)^2-4\left(1-m\right)\cdot2m\)

\(=4+8m\left(m-1\right)\)

\(=8m^2-8m+4\)

Để phương trình có nghiệm thì Δ>=0

=>\(m\in R\)

 

b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0

=>-2<m<4

 

2 tháng 1 2022

còn thiếu -b/a > 0  ạ

15 tháng 4 2020

đk m ở đầu tiên là m>-9 và ra kq m=-8 nhé

15 tháng 4 2020

tìm đk để pt có 2 nghiệm không âm mới đúng nha