Cho tam giác ABC cân tại A, đường trung tuyến AM. Gọi I là trung điểm của cạnh AB:
a)chứng minh: tứ giác ACMI là hình thang.
b)Cho biết IM: 8cm. Tính độ dài AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
tam giác ABC cân tại A có
AM là đường trung tuyến => M là trung điểm của BC
N là trung điểm AC
=> MN là đường trung bình của tm giác ABC (1)
=>AB=2MN
=>AB=2.3=6cm
b)
từ (1) => MN//AB => Tứ giác ABMN là hình thang
Hình tự vẽ ạ
a)
Ta có:
Tam giác ABC cân tại A (gt)
Đường trung tuyến AM (gt)
=> AM vừa là đường cao vừa là đường trung tuyến vừa là đường phân giác trong tam giác ABC ( tính chất đường trung tuyến trong tam giác cân )
MA là đường cao(cmt)=> AM vuông góc BC
Tứ giác AMCK có:
I là trung điểm của AC (gt)
I là trung điểm của MK ( K đối xứng M qua I )
=> I là trung điểm của 2 đường chéo AC và MK
=> Tứ giác AMCK là Hình bình hành
Hình bình hành AMCK có:
Góc AMC vuông (AM vuông góc BC )
=> Hình bình hành AMCK là hình chữ nhật
b)
Vì : Hình bình hành AMCK là hình chữ nhật ⇒ AK // MC ( tính chất hình chữ nhật )
Δ ABC có:
M là trung điểm của BC ( AM là đường trung tuyến )
I là trung điểm của AC (gt)
⇒IM Là đường trung bình của ΔABC
⇒IM // AB (tính chất đường trung bình )
Tứ giác AKMB có:
MK // AB ( IM // AB )
AK // BM ( AK // MC )
⇒ Tứ giác AKMB là Hình Bình Hành
c)
Theo đề ra ta có:
AM là đường trung tuyến
⇒ M là trung điểm của BC
⇒ \(BM=CM=\dfrac{1}{2}BC\)
Mà : BC = 8 cm
⇒ \(BM=CM=\dfrac{1}{2}BC=\dfrac{1}{2}8=4cm\)
Áp dụng định lí Pi ta go vào \(\Delta ACM\) ta có:
\(AC^2=AM^2+CM^2\)
\(\Rightarrow AM^2=AC^2-CM^2=5^2-4^2=9\)
\(\Rightarrow AM=3cm\)
Diện tích tứ giác AMCK là :
\(S_{AMCK}=AM.CM\)
\(\Rightarrow S_{AMCK}=3.4=12cm^2\)
Vậy diện tích tứ giác AMCK là 12 cm vuông
c)
Giả sử tam giác ABC vuông cân
=> Góc A = 90 độ; AB = AC ( tính chất tam giác vuông cân )
AM là đường trung tuyến (gt)
=> AM là đường trung tuyến và là đường phân giác trong tam giác ABC
Tam giác ABC có:
AM Là đường trung tuyến ứng với cạnh huyền BC
=> AM = 1/2BC ( tính chất đường trung tuyến ứng với cạnh huyền ) (1)
Mà :
M là trung điểm của BC => BM = CM =1/2BC (2)
từ 1 và 2 => AM = CM = 1/2 BC
Tứ giác AMCK có:
I là trung điểm của AC (gt)
I là trung điểm của MK ( K đối xứng M qua I )
AM = CM (cmt)
=> Tứ giác AMCK là Hình Vuông
Vậy để tứ giác AMCK là hình vuông thì điều kiện cần có của tam giác ABC là tam giác ABC vuông cân
a: ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(AM=MB=MC=\dfrac{BC}{2}\)
Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
nên AMCK là hình bình hành
Hình bình hành AMCK có MA=MC
nên AMCK là hình thoi
b: AMCK là hình thoi
=>AK//MC và AK=MC
AK//MC
M\(\in\)BC
Do đó: AK//MB
AK=MC
MC=MB
Do đó: AK=MB
Xét tứ giác AKMB có
AK//MB
AK=MB
Do đó: AKMB là hình bình hành
c; Để hình thoi AMCK trở thành hình vuông thì \(\widehat{KCM}=90^0\)
AMCK là hình thoi
=>CA là phân giác của \(\widehat{KCM}\)
=>\(\widehat{ACM}=\dfrac{1}{2}\cdot\widehat{KCM}=45^0\)
=>\(\widehat{ACB}=45^0\)
a: Xét ΔBDC có
E là trung điểm của DC
M là trung điểm của BC
Do đó: EM là đường trung bình của ΔBDC
Suy ra: EM//BD
hay MEDB là hình thang
b: Xét ΔAME có
D là trung điểm của AE
DI//ME
Do đó: I là trung điểm của AM
a: Xét ΔBDC có
E là trung điểm của DC
M là trung điểm của BC
Do đó: EM là đường trung bình của ΔBDC
Suy ra: EM//BD
hay MEDB là hình thang
b: Xét ΔAME có
D là trung điểm của AE
DI//ME
Do đó: I là trung điểm của AM
a: Xét ΔBDC có
E là trung điểm của DC
M là trung điểm của BC
Do đó: EM là đường trung bình của ΔBDC
Suy ra: EM//BD
Xét tứ giác BMED có EM//BD
nên BMED là hình thang
b: Xét ΔAME có
D là trung điểm của AE
DI//ME
Do đó: I là trung điểm của AM
a) Xét tam giác ABC có:
M là trung điểm BC(AM là trung tuyến)
I là trung điểm AB(gt)
=> MI là đường trung bình
=> MI//AC
=> ACMI là hthang
b) Ta có: MI là đường trung bình của tam giác ABC (cmt)
\(\Rightarrow AC=2.MI=2.8=16\left(cm\right)\)