Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔABC có
M là trung điểm của BC
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AB
hay ABMN là hình thang
a) Xét tam giác ABC có:
M là trung điểm BC(AM là trung tuyến)
I là trung điểm AB(gt)
=> MI là đường trung bình
=> MI//AC
=> ACMI là hthang
b) Ta có: MI là đường trung bình của tam giác ABC (cmt)
\(\Rightarrow AC=2.MI=2.8=16\left(cm\right)\)
\(a,\) Vì AM là trung tuyến tam giác cân tại A nên AM cũng là đường cao
Vì D là trung điểm AC và MN nên AMCN là hình bình hành
Mà \(AM\bot BC\Rightarrow AM\bot MC\)
Do đó: AMCN là hình chữ nhật
\(b,\) Vì AMCN là hcn nên \(AM=AC;AN=MC\)
Mà \(AB=AC;MB=MC\Rightarrow AM=AB;AN=MB\)
Vậy ABMN là hình bình hành
\(c,\) Ta có \(BM=MC=\dfrac{1}{2}BC=3(cm)\)
Áp dụng PTG vào tam giác ABM vuông M
\(AM=\sqrt{AB^2-BM^2}=4\left(cm\right)\)
Do đó \(S_{AMCN}=AM\cdot MC=4\cdot3=12\left(cm^2\right)\)
a) Xét tam giác ABC cân tại A: AM là trung tuyến (gt).
\(\Rightarrow\) AM là đường cao (Tính chất các đường trong tam giác cân).
\(\Rightarrow\) AM \(\perp\) BC. \(\Rightarrow\) \(\widehat{AMC}\) = 90o.
Xét tứ giác AMCN có:
+ D là trung điểm của MN (N đối xứng với M qua D).
+ D là trung điểm của AC (gt).
\(\Rightarrow\) Tứ giác AMCN là hình bình hành (dhnb).
Lại có: \(\widehat{AMC}\) = 90o (cmt).
\(\Rightarrow\) Tứ giác AMCN là hình chữ nhật (dhnb).
b) Tứ giác AMCN là hình chữ nhật (cmt).
\(\Rightarrow\) AN // MC (Tính chất hình chữ nhật).
\(\Rightarrow\) AN // BM.
Vì AM là trung tuyến của tam giác ABC (gt). \(\Rightarrow\) M là trung điểm của BC.
\(\Rightarrow\) BM = MC = \(\dfrac{1}{2}\)BC.
Mà AN = MC (Tứ giác AMCN là hình chữ nhật).
\(\Rightarrow\) BM = MC = AN.
Xét tứ giác ABMN có:
+ BM = AN (cmt).
+ BM // AN (cmt).
\(\Rightarrow\) Tứ giác ABMN là hình bình hành (dhnb).
c) Ta có: BM = MC = \(\dfrac{1}{2}\)BC = \(\dfrac{1}{2}\).6 = 3 (cm).
Xét tam giác AMB vuông tại M có:
AB2 = AM2 + BM2 (Định lý Pytago).
Thay số: 52 = AM2 + 32.
\(\Leftrightarrow\) 25 = AM2 + 9. \(\Leftrightarrow\) AM2 = 16. \(\Leftrightarrow\) AM = 4 (cm).
Diện tích hình chữ nhật AMCN là: 3 . 4 = 12 (cm2).
a, Ta có tam giác ABC cân tại A có
AM là đg trung tuyến đồng thời là đg cao
Xét tứ giác ANCM có
D là trung điểm của AC ( gt)
D là trung điểm của MN ( N đối xứng M qua D-gt)
=> ANCM là hình bình hành
mà có góc AMC = 90 độ ( AM là đg cao-cmt)
=> ANCM là hình chữ nhật
b, Ta có AMCN là hình chữ nhật (cmt)
=> MN = AC ; NA = MC
Ta có
AB = AC ( tam giác ABC là tam giác cân -gt)
mà MN = AC (cmt)
=> AB = MN
Lại có MC = MB ( AM là trung tuyến -gt)
mà MC = AN ( cmt)
=> MB = AN
Xét tứ giác ANBM có
MN = AB (cmt)
NA = MB ( cmt)
=> NABM là hình bình hành (dhnb)
a: Xét ΔCPB có
M là trung điểm của BC
N là trung điểm của CP
Do đó: MN là đường trung bình
=>MN//PB
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Xét tứ giác BMNP có MN//PB
nên BMNP là hình thang
mà \(\widehat{NMB}=90^0\)
nên BMNP là hình thang vuông
b: Ta có: NM=PB/2
nên AM=PB
Xét tứ giác AMBP có
AM//PB
AM=PB
Do đó: AMBP là hình bình hành
mà MA=MB
nên AMBP là hình thoi
mà \(\widehat{AMB}=90^0\)
nên AMBP là hình vuông
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
a)Vì M là trung điểm của AB, N là trung điểm của AC=>MN là đường trung bình của tam ΔABC=>MN=1/2 BC mà BC = 10cm nên MN = 5cm
b)Vì MN là đường trung bình của tam ΔABC=>MN//BC=> Tứ giác BMNC là hình thang
c)Theo đề bài ta có ΔABC cân tại A => Góc B=C => Tứ giác BMNC là hình thang cân
a)
tam giác ABC cân tại A có
AM là đường trung tuyến => M là trung điểm của BC
N là trung điểm AC
=> MN là đường trung bình của tm giác ABC (1)
=>AB=2MN
=>AB=2.3=6cm
b)
từ (1) => MN//AB => Tứ giác ABMN là hình thang
nhanh thế mới kịp vẽ cái hềnh