K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2019

Bai nay de ma ban dung tu giac noi tiep va tam giac dong dang la ra ay ma

15 tháng 9 2019

co can minh chung minh luon cho ko ?

Sửa đề: BF và CE cắt nhau tại H

a) Xét (O) có 

ΔBEC nội tiếp đường tròn(B,E,C\(\in\)(O))

BC là đường kính(gt)

Do đó: ΔBEC vuông tại E(Định lí)

\(\Leftrightarrow CE\perp BE\)

\(\Leftrightarrow CE\perp AB\)

\(\Leftrightarrow\widehat{AEC}=90^0\)

hay \(\widehat{AEH}=90^0\)

Xét (O) có 

ΔBFC nội tiếp đường tròn(B,F,C\(\in\)(O))

BC là đường kính(gt)

Do đó: ΔBFC vuông tại F(Định lí)

\(\Leftrightarrow BF\perp CF\)

\(\Leftrightarrow BF\perp AC\)

\(\Leftrightarrow\widehat{AFB}=90^0\)

hay \(\widehat{AFH}=90^0\)

Xét tứ giác AEHF có 

\(\widehat{AEH}\) và \(\widehat{AFH}\) là hai góc đối

\(\widehat{AEH}+\widehat{AFH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét ΔABC có 

BF là đường cao ứng với cạnh AC(cmt)

CE là đường cao ứng với cạnh AB(cmt)

BF cắt CE tại H(gt)

Do đó: H là trực tâm của ΔABC(Định lí ba đường cao của tam giác)

\(\Leftrightarrow AH\perp BC\)

hay \(AD\perp BC\)(đpcm)

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

b: BFEC nội tiếp

=>góc HFE=góc HBC

=>góc HFE=góc HNM

=>FE//MN

NV
25 tháng 7 2021

b.

Do AP là đường kính \(\Rightarrow\)góc \(\widehat{ATP}\) là góc nội tiếp chắn nửa đường tròn

\(\Rightarrow\widehat{ATP}=90^0\) hay \(\widehat{ATH}=90^0\)

\(\Rightarrow\) 3 điểm T, E, F cùng nhìn AH dưới 1 góc vuông nên T, E, F cùng thuộc đường tròn đường kính AH

Hay 5 điểm đã cho đồng viên

25 tháng 7 2021

undefined

8 tháng 2 2022

a. Xét tứ giác AEHF có: \(\left\{{}\begin{matrix}\widehat{HFA}=90^o\\\widehat{HEA}=90^o\end{matrix}\right.\)\(\Rightarrow\widehat{HFA}+\widehat{HEA}=180^o\)\(\Rightarrow\)Tứ giác AEHF nội tiếp đường tròn đường kính HA

Tương tự ta có, xét tứ giác BCEF có: \(\left\{{}\begin{matrix}\widehat{BFC}=90^o\\\widehat{BEC}=90^o\end{matrix}\right.\)\(\Rightarrow\widehat{BFC}+\widehat{BEC}=180^o\)\(\Rightarrow\) Tứ giác BCEF nội tiếp đường tròn đường kính BC

b. Xét đường tròn (O;R) có: \(\widehat{CNM}=\widehat{CBM}\) (cùng nhìn \(\stackrel\frown{CM}\))

Xét tứ giác BCEF nội tiếp đường tròn ta có: \(\widehat{CFE}=\widehat{CBE}\) (cùng nhìn \(\stackrel\frown{CM}\))

\(\Rightarrow\widehat{CNM}=\widehat{CFE}\) (ở vị trí đồng vị)

\(\Rightarrow\)MN//EF (đpcm)

a: Xét tứ giác AEHF có

\(\widehat{AEH}+\widehat{AFH}=180^0\)

Do đó: AEHF là tứ giác nội tiếp

Xét tứ giác BCEF có

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BCEF là tứ giác nội tiếp

25 tháng 2 2022

a, Xét tứ giác BCEF có 

^CEB = ^CFB = 900

mà 2 góc này kề, cùng nhìn cạnh BC 

Vậy tứ giác BCEF là tứ giác nt 1 đường tròn 

b, Xét tứ giác AEHF có 

^HEA = ^HFA = 900

Vậy tứ giác AEHF là tứ giác nt 1 đường tròn 

c, Ta có ^AMN = ^ACN ( góc nt chắn cung AN ) 

^ANM = ^MBA ( góc nt chắn cung MA ) 

mà ^ACN = ^MBA ( tứ giác BCEF nt và 2 góc cùng nhìn cung CF ) 

=> ^AMN = ^ANM Vậy tam giác AMN cân tại A

=> AN = AM 

d, Ta có : ^CBM = ^CFE ( góc nt chắn cung CE của tứ giác BCEF ) 

mặt khác : ^CNM = ^CBM ( góc nt chắn cung CM ) 

=> ^CFE = ^CNM, mà 2 góc này ở vị trí đồng vị ) 

=> MN // EF 

e, Ta có AO là đường cao tam giác MAN 

mà MN // EF ; AO vuông MN => AO vuông EF 

25 tháng 2 2022

4 năm nửa em mới TL dc

8 tháng 2 2019

A B C D E F O I X Y Z M N P J S T R K L V G U Q

Gọi giao điểm thứ hai của AZ,BZ,CZ với đường tròn (O) là S,T,R. Cho đường thẳng DF cắt các đoạn ST,RT lần lượt tại K,L. Gọi AK giao CL tại V. Gọi Q là trung điểm đoạn DF. 

Trước hết, ta thấy: 5 điểm A,R,S,C,T cùng thuộc (O), AV cắt RT tại K, AS cắt CR ở Z, CV cắt ST ở L

Đồng thời có bộ điểm: (K Z L) thẳng hàng. Suy ra: Hệ điểm (A R V S C T) cùng thuộc 1 đường tròn (ĐL Pascal đảo)

Áp dụng ĐL Con Bướm cho 4 điểm A,B,S,T trên (O) thì có Z là trung điểm của FL. Mà P là trung điểm CF

Nên ZP là đường trung bình của \(\Delta\)FLC => ZP // CL. Tương tự: ZM // AK

Do đó: 2 góc ^MZP và ^AVC có 2 cặp cạnh song song => ^MZP = ^AVC = ^ABC (Do V thuộc (O) cmt)

Dễ thấy MQ là đường trung bình \(\Delta\)ADF => MQ // AB. Tương tự: QP // BC => ^MQP = ^ABC

Từ đó: ^MZP = ^MQP => Tứ giác MZQP nội tiếp đường tròn.

Nếu ta gọi trung điểm của DE,EF thứ tự là G,U thì như lập luận trên, các tứ giác NPUX, MYGN nội tiếp

Ta sẽ chứng minh các đường tròn (MPQ),(NPU),(MNG) đồng quy

Thật vậy: Gọi giao điểm thứ hai của (MPQ) và (NPU) là J => ^NJM = ^MJP + ^NJP = ^MQP + ^NUP

Bằng tính chất đường trung bình, góc có cặp cạnh song song dễ có:

^MQP = ^ABC, ^NUP = ^BAC => ^NJM = ^ABC + ^BAC = 1800 - ^ACB = ^MGN

Suy ra: Tứ giác MJNG nội tiếp => (MNG) cũng đi qua J => (MPQ),(NPU),(MNG) đồng quy

Hay 3 đường tròn (NPX),(YMN),(ZNP) đồng quy (tại J) (đpcm).

(P/S: Đề sai nhé, phải là (XNP),(YNM),(ZNP) đồng quy)