K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2019

Bài 1 : \(\frac{2}{3}< \left[\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}\right]:5\times x< \frac{5}{6}\)

=> \(\frac{2}{3}< \left[\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{1}{24}\right]:5\cdot x< \frac{5}{6}\)

=> \(\frac{2}{3}< \left[\frac{1}{6}+\frac{1}{24}+\frac{2}{15}+\frac{3}{40}\right]:5\cdot x< \frac{5}{6}\)

=> \(\frac{2}{3}< \frac{5}{12}:5\cdot x< \frac{5}{6}\)

=> \(\frac{2}{3}< \frac{1}{12}\cdot x< \frac{5}{6}\)

=> \(\frac{2}{3}< \frac{x}{12}< \frac{5}{6}\)

=> \(\frac{8}{12}< \frac{x}{12}< \frac{10}{12}\)

=> x = 9

Bài 2 : \(\frac{\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right]}{x}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)

=> \(\frac{\left[1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}\right]}{x}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{11\cdot12}\)

=> \(\frac{\left[1-\frac{1}{16}\right]}{x}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{11}-\frac{1}{12}\)

=> \(\frac{15}{\frac{16}{x}}=1-\frac{1}{12}\)

=> \(\frac{15}{\frac{16}{x}}=\frac{11}{12}\)

=> \(\frac{15}{16}:x=\frac{11}{12}\)

=> \(x=\frac{45}{44}\)

Bài 3 : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\times(x+1):2}=\frac{399}{400}\)

=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\times(x+1)}=\frac{399}{400}\)

=> \(2\left[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\times(x+1)}\right]=\frac{399}{400}\)

=> \(2\left[\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\times(x+1)}\right]=\frac{399}{400}\)

=> \(\left[\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right]=\frac{399}{800}\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{399}{800}\)

=> \(\frac{1}{x+1}=\frac{1}{800}\)

=> x = 799

11 tháng 9 2019

Bài 2 :

\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right):x=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\) (*)

Ta có : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}=\frac{8+4+2+1}{16}=\frac{15}{16}\) (1)

Lại có : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{11.12}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\)

\(=1\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{11}+\frac{1}{11}\right)-\frac{1}{12}\)

\(=1-\frac{1}{12}=\frac{11}{12}\) (2)

Thay (1) và (2) vào biểu thức (*) ta được :

\(\frac{15}{16}:x=\frac{11}{12}\)

\(\Leftrightarrow x=\frac{15}{16}:\frac{11}{12}\)

\(\Leftrightarrow x=\frac{45}{44}\)

Vậy : \(x=\frac{45}{44}\)

6 tháng 5 2020

Tìm x :

x - 2 = -47 - 4x

x + 4x = -47 + 2

5x = -45

x = -45 : 5

x = -9

Vậy x = -9.

Tìm n thuộc Z :

Ta có : n-4 chia hết cho n+3

=> n+3-7 chia hết cho n+3

=> 7 chia hết cho n+3

=> n+3 thuộc Ư(7) = { -7 ; -1 ; 1 ; 7 }

=> n thuộc { -10 ; -4 ; -2 ; 4 }

Vậy n thuộc { -10 ; -4 ; -2 ; 4 }

6 tháng 5 2020

thank bạn

4 tháng 9 2019

các bn ơi mk cần gấp lắm

bạn ở đâu vậy

16 tháng 6 2017

\(A=\frac{2}{11\cdot15}+\frac{2}{15\cdot19}+...+\frac{2}{51\cdot55}\)

\(A=\frac{2}{4}\left(\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+...+\frac{1}{51}-\frac{1}{55}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{11}-\frac{1}{55}\right)\)

\(A=\frac{1}{2}\cdot\frac{4}{55}\)

\(A=\frac{2}{55}\)

6 tháng 12 2016

bai2

UCLN (n,n+2)=d

=>(n+2)-n chia hết cho d

2 chia het cho d

vay d thuoc uoc cua 2={1,2} 

nếu n chia hết cho 2  uoc chung lon nhta (n,n+2) la 2

neu n ko chia het cho 2=> (n,n+2) nguyen to cung nhau

BCNN =n.(n+2) neu n le

BCNN=n.(n+2)/2

10 tháng 3 2019

kho lam

12 tháng 3 2019

                        Giải

Ta có: \(\left(2x+1\right)\left(y^2-5\right)=12\)

\(\Leftrightarrow\hept{\begin{cases}2x+1\\y^2-5\end{cases}}\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm4;\pm6;\pm3;\pm12\right\}\)

Lập bảng:

\(2x+1\)\(-1\)\(-2\)\(-3\)\(-4\)\(-6\)\(-12\)\(1\)\(2\)\(3\)\(4\)\(6\)\(12\)
\(y^2-5\)\(-12\)\(-6\)\(-4\)\(-3\)\(-2\)\(-1\)\(12\)\(6\)\(4\)\(3\)\(2\)\(1\)
\(x\)\(-1\)Loại\(-2\)Loại    \(1\)   
\(y\)LoạiLoạiLoạiLoạiLoạiLoạiLoạiLoại\(3\)LoạiLoạiLoại

Vậy x  =1 và y = 3

8 tháng 11 2018

\(5^x=y^2+y+1\)

\(5^x-1=y\left(y+1\right)\)

Với x khác 1

\(\left(....5\right)-1=y\left(y+1\right)\)

\(\left(...4\right)=y\left(y+1\right)\)

Ta thấy các số liên tiếp ko có tận cùng bằng 4

Nên ko có x,y

Với x=1

=> \(1-1=y\left(y+1\right)\)

\(\Rightarrow\hept{\begin{cases}y=0\\y=-1\end{cases}}\)

Mà y là số tự nhiên nên y = 0

Vậy x = 1 ; y = 0

Nên

DD
6 tháng 2 2021

\(\hept{\begin{cases}x⋮18\\x⋮15\\x⋮12\end{cases}}\Leftrightarrow x⋮BCNN\left(18,15,12\right)\)

Ta có: \(18=2.3^2,15=3.5,12=2^2.3\Rightarrow BCNN\left(18,15,12\right)=2^2.3^2.5=180\).

\(x⋮180\Rightarrow x\in B\left(180\right)\)mà \(200\le x\le500\Rightarrow x=360\).

6 tháng 2 2021

Cảm ơn Đoàn Đức Hà ạ^^

15 tháng 10 2016

Bài 1: 

a) Ta có: 7x = 4y => x/4 = y/7

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

     x/4 = y/7 = y - x / 7 - 4 = 24/3 = 8

x/4 = 8 => x = 8 . 4 = 32

y/7 = 8 => y = 8 . 7 = 56

Vậy x = 32 và y = 56

b) Ta có: x/5 = y/6 => x/20 = y/24 (1)

y/8 = z/7 => y/24 = z/21 (2)

Từ (1) và (2) => x/20 = y/24 = z/21

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

     x/20 = y/24 = z/21 = x + y - z / 20 + 24 - 21 = 69/23 = 3

x/20 = 3 => x = 3 . 20 = 60

y/24 = 3 => y = 3 . 24 = 72

z/21 = 3 => z = 3 . 21 = 63

Vậy x = 60; y = 72 và z = 63

c) Đặt x/3 = y/4 = k

=> x = 3k và y = 4k

Ta có: x^2 . y^2 = 144

=> (3k)^2 . (4k)^2 = 144

=> 9 . k^2 . 16 . k^2 = 144

=> 144 . k^4 = 144

=> k^4 = 144 : 144 = 1

=> k = 1 hoặc k = -1

Nếu k = 1 => x = 1 . 3 = 3; y = 1 . 4 = 4

Nếu k = -1 => x = -1 . 3 = -3; y = -1 . 4 = -4

Vậy x = {-3; 3} và y = {-4; 4}

 

 

16 tháng 10 2016

b m n a O

* Vẽ hình hơi xấu chút leuleu

Vì Om vuông góc với Oa nên \(\widehat{mOb}\) = 900

Vì On vuông góc với Ob nên \(\widehat{bOn}\) = 900

Vì tia Om nằm giữa 2 tia Oa và Ob nên:

          \(\widehat{aOm}+\widehat{mOb}=\widehat{aOb}\)

Hay      900 + \(\widehat{mOb}\) = 1200

=> \(\widehat{mOb}\) = 1200 - 900

=> \(\widehat{mOb}\) = 300

Vì tia On nằm giữa 2 tia Oa và Ob nên:

          \(\widehat{bOn}+\widehat{nOa}=\widehat{aOb}\)

Hay      900 + \(\widehat{nOa}\) = 1200

=> \(\widehat{nOa}\) = 1200 - 900

=> \(\widehat{nOa}\) = 300

=> \(\widehat{nOa}=\widehat{mOb}\) (= 300)

Vậy  \(\widehat{nOa}=\widehat{mOb}\)