Cho tam giác ABC có 3 góc nhọn. D là điểm trên cạnh BC. Gọi E và F lần lượt là hình chiếu của B và C trên đường thẳng AD. Xác định vị trí của điểm D để tổng BE + CF có giá trị lớn nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi cho mình hỏi bài này ở đề năm bao nhiêu của thành phố nào vậy bạn?????
3. Xét tứ giác BFHD có:
HFB + HDB = 90º + 90º = 180º => BFHD là tứ giác nội tiếp. ⇒ FBH = FDH (1)
Tương tự có DHEC là tứ giác nội tiếp, ⇒HCE = HDE (2)
Mà BFEC là tứ giác nội tiếp nên FCE = FBE (3)
Từ (1) (2) (3)⇒ 2ABE = FDH + HDE = FDE
Vì BFEC là tứ giác nội tiếp đường tròn tâm I, đường kính BC nên theo quan hệ giữa góc ở tâm và góc nội tiếp cùng chắn cung EF, ta có: FIE = 2.FBE = 2.ABE
⇒FIE = FDE
4.Vì BFEC là tứ giác nội tiếp nên:
ABC = 180º – FEC = AEF => ΔAEF ~ ΔABC (g.g)
Suy ra độ dài EF không đổi khi A chạy trên cung lớn BC của đường tròn (O)
Gọi K là giao điểm thứ 2 của ED và đường tròn đường kính BC
Theo tính chất góc ngoài: FDE = DKE + DEK
Theo ý 3 và quan hệ giữa góc ở tâm và góc nội tiếp cùng chắn cung, có FDE = FIE = 2.DKE
⇒DKE = DEK => ΔDEK cân tại D => DE = DK
Chu vi ΔDEF là P = DE + EF + FD = EF + FD + DK = EF + FK
Có FK ≤ BC ( dây cung – đường kính) => P ≤ EF + BC không đổi
Dâu bằng xảy ra khi và chỉ khi FK đi qua I ⇔ D trùng I ⇔ ΔABC cân tại A.
Vậy A là điểm chính giữa của cung lớn BC
a/
Ta thấy F và E đều nhìn BC dưới cùng 1 góc 90 độ nên E,F nằm trên đường tròn đường kính BC ta gọi là đường tròn (O')
=> B,F,E,C cùng nawmg trên một đường tròn
b/
Xét đường tròn (O) ta có
sđ \(\widehat{BQP}=\) sđ \(\widehat{BCP}=\frac{1}{2}\) sđ cung BP (góc nội tiếp đường tròn) (1)
Xét đường tròn (O') ta có
sđ \(\widehat{BEF}=\) sđ \(\widehat{BCP}=\frac{1}{2}\) sđ cung BF (góc nội tiếp đường tròn) (2)
Từ (1) và (2) \(\Rightarrow\widehat{BQP}=\widehat{BEF}\) => PQ//EF (Hai đường thẳng bị cắt bởi đường thẳng thứ 3 có hai góc ở vị trí đồng vị thì chúng // với nhau
c/ ta thấy F và D cùng nhìn BH dưới cùng 1 góc 90 độ nên BDHF là tứ giác nội tiếp
sđ \(\widehat{ABE}=\)sđ \(\widehat{FDA}=\frac{1}{2}\) sđ cung FH (1)
Ta thấy D và E cùng nhìn AB đướ cùng 1 góc 90 độ nên ABDE là tứ giác nội tiếp
sđ \(\widehat{ABE}=\)sđ \(\widehat{ADE}=\frac{1}{2}\) sđ cung AE (2)
Mà \(\widehat{FDA}+\widehat{ADE}=\widehat{FDE}\) (3)
Từ (1) (2) và (3) \(\Rightarrow\widehat{FDE}=2.\widehat{ABE}\left(dpcm\right)\)
a)xét tgAEB và tgADC có
A là góc chung
AE=AC(gt)
AB=AD(gt)
suy ra tgAEB = tgADC (c.g.c)
suy ra BE=AC(hai cạnh tương ứng
cho k trước đi rồi làm câu b;c;d cho
a)tứ giác AEDF là hình chữ nhật (vì E=A=F=900 )
Để tứ giác AEDF là hình vuông thì AD là tia phân giác của góc BAC
b)do tứ giác AEDF là hình chữ nhật nên AD=EF
=>3AD+4EF nhỏ nhất => AD nhỏ nhất
D là hình chiếu góc vuông của A lên BC
Mình nói trước là mình mới học dạng này nên không chắc đâu nhé! Nhất là cái dấu "=" ấy, nó rất khó để giải thích và có thể sai. Nếu bạn dùng geogebra thì sẽ dễ hiểu hơn.
Đặt BC = a = const (hằng số)
Xét trường hợp E và F không trùng D. Khi đó theo quan hệ giữa đường vuông góc và đường xiên thì:
BE + CF < BD + CD = BC (1)
Nếu E và F trùng D thì BE + CF = BC (2)
Từ (1) và (2) suy ra \(BE+CF\le BC=const\)
Đẳng thức xảy ra khi E và F trùng D khi đó D là trung điểm BC và tam giác ABC cân tại A.
tth làm không đúng rồi.
Ta có E là hình chiếu của B lên AD
F là hình chiếu của CAD
=> \(BC=BD+DC\ge BE+CF\)
Dấu "=" xảy ra khi và chỉ khi \(E\equiv D\equiv F\)
khi đó: \(BD\perp AD;CD\perp AD\)=> D là chân đường cao hạ từ A đến BC
Vậy D là chân đường cao hạ từ A đến BC thì BE+CF đạt giá trị lớn nhất bằng BC