K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2015

Theo cách làm của mình thì mình không biết có đúng hay không nhưng nhưng đây là cách làm của mình:

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{2\left(a+b+c\right)}{a.b.c}=\frac{2.2015}{a.b.c}\)

Mà \(\frac{2.2015}{a.b.c}=\frac{1}{2015}\Rightarrow2.2015=\frac{a.b.c}{2015}\)

Vậy có ít một số bằng 2015

\(a+b+c=0\Rightarrow c=-\left(a+b\right);\left(1\right)\)

\(ab+bc+ca=0\Rightarrow ab+c\left(a+b\right)=0;\left(2\right)\)

(1)(2)=>\(ab=c^2\)

tương tự trên 

=>\(bc=a^2\)và \(ca=b^2\)

\(ab+bc+ca=0\Leftrightarrow c^2+a^2+b^2=0\Rightarrow a=b=c=0\)

=> M = 2