K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

Đáp án: A

6 tháng 12 2019

Đáp án C

4 tháng 9 2018

x 3 + x y 2 − 10 y = 0 x 2 + 6 y 2 = 10 < = > x 3 + x y 2 − ( x 2 + 6 y 2 ) y = 0    (1) x 2 + 6 y 2 = 10                        (2)

T phương trình (1) ta có:

x 3 + x y 2 − ( x 2 + 6 y 2 ) y = 0 < = > x 3 + x y 2 − x 2 y − 6 y 3 = 0 < = > x 3 − 2 x 2 y + x 2 y − 2 x y 2 + 3 x y 2 − 6 y 3 = 0 < = > ( x − 2 y ) ( x 2 + x y + 3 y 2 ) = 0 < = > x = 2 y x 2 + x y + 3 y 2 = 0

+ Trường hp 1:  x 2 + x y + 3 y 2 = 0 < = > ( x + y 2 ) 2 + 11 y 2 4 = 0 = > x = y = 0

Với x= y = 0 không thỏa mãn phương trình (2).

+ Trường hp 2: x= 2y thay vào phương trình (2) ta có: 

4 y 2 + 8 y 2 = 12 < = > y 2 = 1 < = > y = 1 = > x = 2 y = − 1 = > x = − 2

Vậy hệ phương trình có 2 nghiệm  ( x ; y ) ∈ { ( 2 ; 1 ) ; ( − 2 ; − 1 ) }

 

9 tháng 12 2017

Điều kiện  x ≥ 1 x 2 − x y 2 + 1 ≥ 0 kết hợp với phương trình (1), ta có y>0

Từ (1) ta có:

4 x + 1 − x y y 2 + 4 = 0 ⇔ 4 x + 1 = x y y 2 + 4 ⇔ 16 x + 1 = x 2 y 2 y 2 + 4 ⇔ y 4 + 4 y 2 x 2 − 16 x − 16 = 0

Giải phương trình theo ẩn x ta được  x = 4 y 2 hoặc  x = − 4 y 2 + 4 < 0 (loại)

Với  x = 4 y 2 ⇔ x y 2 = 4  thế vào phương trình (2), ta được  x 2 − 3 + 3 x − 1 = 4

Điều kiện  x ≥ 3 ta có

x 2 − 3 + 3 x − 1 = 4 ⇔ x 2 − 3 − 1 + 3 x − 1 − 1 = 0 ⇔ x 2 − 4 x 2 − 3 + 1 + 3 x − 2 x − 1 + 1 = 0 ⇔ x − 2 x + 2 x 2 − 3 + 1 + 3 x − 1 + 1 = 0 ⇔ x − 2 = 0   ( v ì   x + 2 x 2 − 3 + 1 + 3 x − 1 + 1 > 0 ) ⇔ x = 2.

Với x= 2 ta có  y 2 = 2 y > 0 ⇔ y = 2  

Kết hợp với điều  kiện trên, hệ phương trình có nghiệm  2 ; 2

16 tháng 10 2019

x 3 + 4 y = y 3 + 16 x 1 + y 2 = 5 ( 1 + x 2 ) ( 1 )

– Xét x = 0, hệ (I) trở thành  4 y = y 3 y 2 = 4 < = > y = ± 2

– Xét x ≠ 0, đặt  y x = t < = > y = x t . Hệ (I) trở thành

x 3 + 4 x t = x 3 t 3 + 16 x 1 + x 2 t 2 = 5 ( 1 + x 2 ) < = > x 3 ( t 3 − 1 ) = 4 x t − 16 x x 2 ( t 2 − 5 ) = 4 < = > x 3 ( t 3 − 1 ) = 4 x ( t − 4 ) ( 1 ) 4 = x 2 ( t 2 − 5 ) ( 2 )

 

Nhân từng vế của (1) và (2), ta được phương trình hệ quả

4 x 3 ( t 3 − 1 ) = 4 x 3 ( t − 4 ) ( t 2 − 5 ) < = > t 3 − 1 = t 3 − 4 t 2 − 5 t + 20     (Do x ≠ 0) <=>4t 2 + 5 t − 21 = 0 < = > t = − 3 t = 7 4

+ Với t = – 3, thay vào (2) được x2 = 1 x = ±1.

x = 1 thì y = –3, thử lại (1;–3) là một nghiệm của (I)

x = –1 thì y = 3, thử lại (–1;3) là một nghiệm của (I)

+ Với t = 7/4 , thay vào (2) được  x 2 = − 64 31 (loại)

 

Vậy hệ (I) có các nghiệm (0;2), (0;–2), (1;–3), (–1;3).

12 tháng 5 2017

Xét phương trình:

x 5 – y 5 + x y = 0 ⇔ x 5 – y 5 + x y ( x 3 + y 3 ) = 0 ⇔ ( x – y ) ( x 4 + y 4 ) = 0

⇔ x − y = 0 x 4 + y 4 = 0 ⇔ x = y x = y = 0 ⇔ x = y

Thử lại x = y không thỏa mãn phương trình đầu của hệ.

Vậy hệ vô nghiệm

Đáp án:C

6: \(-x^2y\left(xy^2-\dfrac{1}{2}xy+\dfrac{3}{4}x^2y^2\right)\)

\(=-x^3y^3+\dfrac{1}{2}x^3y^2-\dfrac{3}{4}x^4y^3\)

7: \(\dfrac{2}{3}x^2y\cdot\left(3xy-x^2+y\right)\)

\(=2x^3y^2-\dfrac{2}{3}x^4y+\dfrac{2}{3}x^2y^2\)

8: \(-\dfrac{1}{2}xy\left(4x^3-5xy+2x\right)\)

\(=-2x^4y+\dfrac{5}{2}x^2y^2-x^2y\)

9: \(2x^2\left(x^2+3x+\dfrac{1}{2}\right)=2x^4+6x^3+x^2\)

10: \(-\dfrac{3}{2}x^4y^2\left(6x^4-\dfrac{10}{9}x^2y^3-y^5\right)\)

\(=-9x^8y^2+\dfrac{5}{3}x^6y^5+\dfrac{3}{2}x^4y^7\)

11: \(\dfrac{2}{3}x^3\left(x+x^2-\dfrac{3}{4}x^5\right)=\dfrac{2}{3}x^3+\dfrac{2}{3}x^5-\dfrac{1}{2}x^8\)

12: \(2xy^2\left(xy+3x^2y-\dfrac{2}{3}xy^3\right)=2x^2y^3+6x^3y^3-\dfrac{4}{3}x^2y^5\)

13: \(3x\left(2x^3-\dfrac{1}{3}x^2-4x\right)=6x^4-x^3-12x^2\)

31 tháng 7 2021

1, x3-9x2y+27xy2-27y3=(x-3y)3

2, 27x3-9x2y+xy2-\(\dfrac{1}{27}\)y3=(3x-\(\dfrac{1}{3}\)y)3

3)x6-3x4y+3xy2-y3=(x2-y)3

1) \(x^3-9x^2y+27xy^2-27y^3=\left(x-3y\right)^3\)

2) \(27x^3-9x^2y+xy^2-\dfrac{1}{27}y^3=\left(3x-\dfrac{1}{3}y\right)^3\)

3) \(x^6-3x^4y+3xy^2-y^3=\left(x^2-y\right)^3\)

1: =(2x+y-2y)(2x+y+2y)

=(2x-y)(2x+3y)

2: =(4-5x)(16+20x+25x^2)

3: =x(x^2-2xy+y^2-4)

=x[(x-y)^2-4]

=x(x-y-2)(x-y+2)

4: =(x-y)(x^2+xy+y^2)+xy(x-y)

=(x-y)(x^2+2xy+y^2)

=(x-y)(x+y)^2

28 tháng 7 2023

1: =(2x+y-2y)(2x+y+2y)

=(2x-y)(2x+3y)

2: =(4-5x)(16+20x+25x^2)

3: =x(x^2-2xy+y^2-4)

=x[(x-y)^2-4]

=x(x-y-2)(x-y+2)

4: =(x-y)(x^2+xy+y^2)+xy(x-y)

=(x-y)(x^2+2xy+y^2)

=(x-y)(x+y)^2

 

 

Ta có: \(\left(x^3-x^2y+xy^2-y^3\right)\left(x+y\right)\)

\(=\left[x^2\left(x-y\right)+y^2\left(x-y\right)\right]\left(x+y\right)\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=x^4-y^4=2^4-\left(\dfrac{1}{2}\right)^4=16-\dfrac{1}{16}=\dfrac{255}{16}\)