cho tam giác MNQ vuông tại M có đường cao MH. biết MQ=12,QN=20.tính MN,NH,QH,HN
vẽ tam giác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:\(\tan Q=\frac{MN}{MQ}=\frac{5}{6}\)
\(\Rightarrow Q=40^0\)
ta có N=\(90^0\)-Q=\(90^0-40^0=50^0\)
áp dụng hệ về cạnh và góc trong tam giác vuông ta có:
\(MN=NQ\times\sin Q\)
\(\approx7,779cm\)
b,áp dụng hệ về cạnh và đường cao trong tam giác vuông có:
1, MH x NQ=MN x MQ
\(\Rightarrow MH=3,85\)
2, \(NH\times NQ=MN^2\)
\(\Rightarrow NH\approx3,214cm\)
ta có:HN=NQ-HQ
\(\Rightarrow\)HQ\(\approx\)4,565cm
c, vì tứ giác MKHE có:
gocsM = gócMKA = gocsMEA=\(90^0\)
\(\Rightarrow\)tứ giác MKHE là hình chữ nhật
áp dụng hệ thức cạnh và góc trong tam giác vuông có:
1, \(EH=NH\times\sin ENH\)
\(\Rightarrow EH\approx2,067cm\)
2, \(HK=HQ\times\sin KQH\)
\(\Rightarrow HK\approx3,497cm\)
\(\Rightarrow S_{MEHK}=7,228cm^2\)
xong rồi k mình nha
a: \(NQ=\sqrt{16^2+12^2}=20\left(cm\right)\)
NP/NQ=12/20=3/5
b: Xét ΔMHN vuông tại H và ΔNPQ vuông tại P co
góc MNH=góc NQP
=>ΔMHN đồg dạng với ΔNPQ
\(MH=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)
c: Xét ΔMQN vuông tại M có MH là đường cao
nên MQ^2=QH*QN
a, Xét △MQN vuông tại M có: MQ2 + MN2 = QN2 (định lý Pytago)
=> 162 + 122 = QN2 => QN2 = 400 => QN = 20 (cm)
b, Xét △MQN vuông tại M có: MH là đường cao
=> MN2 = HN . QN (1) , MQ2 = QH . QN (2)
Lấy (1) : (2) \(\Rightarrow\frac{MN^2}{MQ^2}=\frac{HN.QN}{QH.QN}=\frac{HN}{QH}\) \(\Rightarrow\frac{MN}{MQ}=\sqrt{\frac{HN}{QH}}\)(đpcm)
a: Xét ΔNKH vuông tại K và ΔNMQ vuông tại M có
\(\widehat{N}\) chung
Do đó: ΔNKH~ΔNMQ
b: Xét ΔQMN có
H là trung điểm của QN
HK//QM
Do đó: K là trung điểm của MN
Xét ΔQMN có
H là trung điểm của QN
HE//MN
Do đó: E là trung điểm của QM
Xét tứ giác MKHE có \(\widehat{MKH}=\widehat{MEH}=\widehat{EMK}=90^0\)
nên MKHE là hình chữ nhật
=>HK=EM và MK=EH
ta có: HK=EM
EM=EQ
Do đó: HK=EM=EQ
Ta có: MK=EH
MK=KN
Do đó: EH=MK=KN
Xét ΔEMK vuông tại M và ΔHKN vuông tại K có
EM=HK
MK=KN
Do đó: ΔEMK=ΔHKN
=>ΔEMK~ΔHKN
M N Q H 2 6 O
a) \(MN^2=NH.NQ=2.\left(2+6\right)=16\)
=> MN = 4 (cm). => Bán kính hình tròn tâm O là MN/2 = 2 (cm)
=> Diện tích hình tròn tâm O là: 2.2.3,14 = ...12,56 (cm2)
b) Ta có tam giác ONH là tam giác đều (vì ON = OH = HN = 2).
Suy ra \(\widehat{NOH}=60^o\) => \(\widehat{MOH}=180^o-60^o=120^o\)
=> Diện tích quạt tròn MOH là: \(\frac{12,65}{360}.120=\frac{12,65}{3}\left(cm^2\right)\)
a: góc FEQ=góc FMQ=90 độ
=>FMEQ nội tiếp
Tam I là trung điểm của FQ
Áp dụng HTL trong tam giác MNQ vuông tại Q:
\(MQ^2=QH.QN\)
\(\Rightarrow QH=\dfrac{MQ^2}{QN}=\dfrac{12^2}{20}=7,2\)
Áp dụng đ/lý Pytago:
\(QN^2=MN^2+MQ^2\)
\(\Rightarrow MN=\sqrt{QN^2-MQ^2}=\sqrt{20^2-12^2}=16\)
Áp dụng HTL:
\(MN^2=NH.QN\)
\(\Rightarrow NH=\dfrac{MN^2}{QN}=\dfrac{16^2}{20}=12,8\)