Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:\(\tan Q=\frac{MN}{MQ}=\frac{5}{6}\)
\(\Rightarrow Q=40^0\)
ta có N=\(90^0\)-Q=\(90^0-40^0=50^0\)
áp dụng hệ về cạnh và góc trong tam giác vuông ta có:
\(MN=NQ\times\sin Q\)
\(\approx7,779cm\)
b,áp dụng hệ về cạnh và đường cao trong tam giác vuông có:
1, MH x NQ=MN x MQ
\(\Rightarrow MH=3,85\)
2, \(NH\times NQ=MN^2\)
\(\Rightarrow NH\approx3,214cm\)
ta có:HN=NQ-HQ
\(\Rightarrow\)HQ\(\approx\)4,565cm
c, vì tứ giác MKHE có:
gocsM = gócMKA = gocsMEA=\(90^0\)
\(\Rightarrow\)tứ giác MKHE là hình chữ nhật
áp dụng hệ thức cạnh và góc trong tam giác vuông có:
1, \(EH=NH\times\sin ENH\)
\(\Rightarrow EH\approx2,067cm\)
2, \(HK=HQ\times\sin KQH\)
\(\Rightarrow HK\approx3,497cm\)
\(\Rightarrow S_{MEHK}=7,228cm^2\)
xong rồi k mình nha
a, Xét △MQN vuông tại M có: MQ2 + MN2 = QN2 (định lý Pytago)
=> 162 + 122 = QN2 => QN2 = 400 => QN = 20 (cm)
b, Xét △MQN vuông tại M có: MH là đường cao
=> MN2 = HN . QN (1) , MQ2 = QH . QN (2)
Lấy (1) : (2) \(\Rightarrow\frac{MN^2}{MQ^2}=\frac{HN.QN}{QH.QN}=\frac{HN}{QH}\) \(\Rightarrow\frac{MN}{MQ}=\sqrt{\frac{HN}{QH}}\)(đpcm)
M N Q H 2 6 O
a) \(MN^2=NH.NQ=2.\left(2+6\right)=16\)
=> MN = 4 (cm). => Bán kính hình tròn tâm O là MN/2 = 2 (cm)
=> Diện tích hình tròn tâm O là: 2.2.3,14 = ...12,56 (cm2)
b) Ta có tam giác ONH là tam giác đều (vì ON = OH = HN = 2).
Suy ra \(\widehat{NOH}=60^o\) => \(\widehat{MOH}=180^o-60^o=120^o\)
=> Diện tích quạt tròn MOH là: \(\frac{12,65}{360}.120=\frac{12,65}{3}\left(cm^2\right)\)
\(QH=\sqrt{4\cdot12}=4\sqrt{3}\left(cm\right)\)
\(QM=\sqrt{\left(4\sqrt{3}\right)^2+4^2}=8\left(cm\right)\)
\(QN=\sqrt{16^2-8^2}=8\sqrt{3}\left(cm\right)\)
\(QH=\sqrt{4\cdot12}=4\sqrt{3}\left(cm\right)\)
QM=8(cm)
\(QN=8\sqrt{3}\left(cm\right)\)
a: góc FEQ=góc FMQ=90 độ
=>FMEQ nội tiếp
Tam I là trung điểm của FQ
b: Xét ΔPDM vuông tại P có PH là đường cao ứng với cạnh huyền MD, ta được:
\(MH\cdot MD=MP^2\left(1\right)\)
Xét ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:
\(PH\cdot PN=MP^2\left(2\right)\)
Từ (1) và (2) suy ra \(MH\cdot MD=PH\cdot PN\)
M N I H 25cm 144 cm
Tam giác MNI vuông tại M, áp dụng hệ thức, ta có:
\(MH^2=NH.HI=25.144=3600\)
\(\Rightarrow MH=\sqrt{3600}=60\left(cm\right)\)
Vì H nằm giữa N và I nên: \(NH+HI=25+144=NI=169\left(cm\right)\)
Tam giác MNI vuông tại M, áp dụng hệ thức, ta lại có:
\(MN^2=NH.NI=25.169=4225\Rightarrow MN=\sqrt{4225}=65\left(cm\right)\)
\(MI^2=HI.NI=144.169=24336\Rightarrow MI=\sqrt{24336}=156\left(cm\right)\)
Vậy .....
Áp dụng HTL trong tam giác MNQ vuông tại Q:
\(MQ^2=QH.QN\)
\(\Rightarrow QH=\dfrac{MQ^2}{QN}=\dfrac{12^2}{20}=7,2\)
Áp dụng đ/lý Pytago:
\(QN^2=MN^2+MQ^2\)
\(\Rightarrow MN=\sqrt{QN^2-MQ^2}=\sqrt{20^2-12^2}=16\)
Áp dụng HTL:
\(MN^2=NH.QN\)
\(\Rightarrow NH=\dfrac{MN^2}{QN}=\dfrac{16^2}{20}=12,8\)