K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2021

Áp dụng HTL trong tam giác MNQ vuông tại Q:

\(MQ^2=QH.QN\)

\(\Rightarrow QH=\dfrac{MQ^2}{QN}=\dfrac{12^2}{20}=7,2\)

Áp dụng đ/lý Pytago:

\(QN^2=MN^2+MQ^2\)

\(\Rightarrow MN=\sqrt{QN^2-MQ^2}=\sqrt{20^2-12^2}=16\)

Áp dụng HTL:

\(MN^2=NH.QN\)

\(\Rightarrow NH=\dfrac{MN^2}{QN}=\dfrac{16^2}{20}=12,8\)

3 tháng 8 2017

ta có:\(\tan Q=\frac{MN}{MQ}=\frac{5}{6}\)

\(\Rightarrow Q=40^0\)

ta có N=\(90^0\)-Q=\(90^0-40^0=50^0\)

áp dụng hệ về cạnh và góc trong tam giác vuông ta có:

\(MN=NQ\times\sin Q\)

\(\approx7,779cm\)

b,áp dụng hệ về cạnh và đường cao trong tam giác vuông có:

1, MH x NQ=MN x MQ

\(\Rightarrow MH=3,85\)

2, \(NH\times NQ=MN^2\)

\(\Rightarrow NH\approx3,214cm\)

ta có:HN=NQ-HQ

\(\Rightarrow\)HQ\(\approx\)4,565cm

c, vì tứ giác MKHE có:

gocsM = gócMKA = gocsMEA=\(90^0\)

\(\Rightarrow\)tứ giác MKHE là hình chữ nhật

áp dụng hệ thức cạnh và góc trong tam giác vuông có:

1, \(EH=NH\times\sin ENH\)

\(\Rightarrow EH\approx2,067cm\)

2, \(HK=HQ\times\sin KQH\)

\(\Rightarrow HK\approx3,497cm\)

\(\Rightarrow S_{MEHK}=7,228cm^2\)

                                                                                   xong rồi k mình nha

5 tháng 9 2020

a, Xét △MQN vuông tại M có: MQ2 + MN2 = QN2  (định lý Pytago)

=> 162 + 122 = QN2  => QN2 = 400 => QN = 20 (cm)

b, Xét △MQN vuông tại M có: MH là đường cao

=> MN2 = HN . QN  (1)  ,  MQ2 = QH . QN  (2)

Lấy (1) : (2) \(\Rightarrow\frac{MN^2}{MQ^2}=\frac{HN.QN}{QH.QN}=\frac{HN}{QH}\)   \(\Rightarrow\frac{MN}{MQ}=\sqrt{\frac{HN}{QH}}\)(đpcm)

AA
11 tháng 5 2017

M N Q H 2 6 O

a) \(MN^2=NH.NQ=2.\left(2+6\right)=16\)

=> MN = 4 (cm). => Bán kính hình tròn tâm O là MN/2 = 2 (cm) 

=> Diện tích hình tròn tâm O là: 2.2.3,14 = ...12,56 (cm2)

b) Ta có tam giác ONH là tam giác đều (vì ON = OH = HN = 2).

Suy ra \(\widehat{NOH}=60^o\) => \(\widehat{MOH}=180^o-60^o=120^o\)

=> Diện tích quạt tròn MOH là: \(\frac{12,65}{360}.120=\frac{12,65}{3}\left(cm^2\right)\)

21 tháng 10 2021

\(QH=\sqrt{4\cdot12}=4\sqrt{3}\left(cm\right)\)

\(QM=\sqrt{\left(4\sqrt{3}\right)^2+4^2}=8\left(cm\right)\)

\(QN=\sqrt{16^2-8^2}=8\sqrt{3}\left(cm\right)\)

21 tháng 10 2021

\(QH=\sqrt{4\cdot12}=4\sqrt{3}\left(cm\right)\)

QM=8(cm)

\(QN=8\sqrt{3}\left(cm\right)\)

a: góc FEQ=góc FMQ=90 độ

=>FMEQ nội tiếp

Tam I là trung điểm của FQ

b: Xét ΔPDM vuông tại P có PH là đường cao ứng với cạnh huyền MD, ta được:

\(MH\cdot MD=MP^2\left(1\right)\)

Xét ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(PH\cdot PN=MP^2\left(2\right)\)

Từ (1) và (2) suy ra \(MH\cdot MD=PH\cdot PN\)

12 tháng 7 2018

M N I H 25cm 144 cm

Tam giác MNI vuông tại M, áp dụng hệ thức, ta có:

\(MH^2=NH.HI=25.144=3600\)

\(\Rightarrow MH=\sqrt{3600}=60\left(cm\right)\)

Vì H nằm giữa N và I nên: \(NH+HI=25+144=NI=169\left(cm\right)\)

Tam giác MNI vuông tại M, áp dụng hệ thức, ta lại có:

\(MN^2=NH.NI=25.169=4225\Rightarrow MN=\sqrt{4225}=65\left(cm\right)\)

\(MI^2=HI.NI=144.169=24336\Rightarrow MI=\sqrt{24336}=156\left(cm\right)\)

Vậy .....