K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

ko chắc đúng

Cho tam giác ABC vuông tại A,đường cao AH,Gọi D E lần lượt là hình chiếu của H trên AB AC,Tính DE,Chứng minh AD.AB = AE.AC,Các đường thẳng vuông góc với DE tại D và E cắt BC lần lượt tại M và N,Chứng minh M và N theo thứ tự là trung điểm của BH và CH,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9

3 tháng 5 2022

mọi người giúp em dùm cái ạ -_-

3 tháng 5 2022

\(\widehat{DAH}=90^0-\widehat{AHD}=\widehat{BHD}\).

\(\widehat{HAE}=90^0-\widehat{AHE}=\widehat{CHE}\).

-△AHD và △HBD có: \(\widehat{DAH}=\widehat{DHB};\widehat{ADH}=\widehat{BDH}=90^0\).

\(\Rightarrow\)△AHD∼△HBD (g-g) \(\Rightarrow\dfrac{AD}{HD}=\dfrac{HD}{BD}\Rightarrow HD^2=AD.BD\).

-△AHE và △HCE có: \(\widehat{HAE}=\widehat{CHE};\widehat{AEH}=\widehat{HEC}=90^0\).

\(\Rightarrow\)△AHE∼△HCE (g-g) \(\Rightarrow\dfrac{AE}{HE}=\dfrac{HE}{CE}\Rightarrow HE^2=AE.CE\)

\(\Rightarrow HD^2+HE^2=AD.BD+AE.CE\left(1\right)\).

-Tứ giác ADHE có: \(\widehat{ADH}=\widehat{DAE}=\widehat{AEH}=90^0\)

\(\Rightarrow\)ADHE là hình chữ nhật nên △DHE vuông tại H, \(AH=DE\)

\(\Rightarrow HD^2+HE^2=DE^2=AH^2\left(2\right)\)

-Từ (1), (2) suy ra: \(AH^2=AD.BD+AE.CE\)

a: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=30\cdot20=600\left(cm^2\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=24\left(cm\right)\)

\(BH=\sqrt{30^2-24^2}=18\left(cm\right)\)

CH=32(cm)

\(S_{ABH}=\dfrac{24\cdot18}{2}=24\cdot9=216\left(cm^2\right)\)

\(S_{ACH}=\dfrac{24\cdot32}{2}=12\cdot32=384\left(cm^2\right)\)

b: \(AD=\dfrac{AH^2}{AB}=\dfrac{24^2}{30}=19.2\left(cm\right)\)

\(HD=\dfrac{AH\cdot HB}{AB}=\dfrac{24\cdot18}{30}=14.4\left(cm\right)\)

\(S_{AEHD}=HD\cdot AD=19.2\cdot14.4=276.48\left(cm^2\right)\)