K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

Ta đặt :

\(\hept{\begin{cases}4n+5=a^2\\9n+7=b^2\end{cases}}\)( a,b là các số tự nhiên )

\(\Rightarrow\hept{\begin{cases}36n+45=9a^2\\36n+28=4b^2\end{cases}}\)

\(\Rightarrow\left(36n+45\right)-\left(36n+28\right)=9a^2-4b^2\)

\(\Rightarrow17=\left(3a-2b\right)\left(3a+2b\right)\)

Vì a, b là các số tự nhiên nên 3a-2b , 3a+3b là cá số nguyên và 3a-2b <= 3a+2b nên ta có 

\(\left(3a-2b;3a+2b\right)\in\left\{\left(1;17\right);\left(-17;-1\right)\right\}\)

\(\Rightarrow6a\in\left\{18;-18\right\}\)

\(\Rightarrow a\in\left\{3;-3\right\}\)

Mà a là số tự nhiên nên a=3

\(\Rightarrow4n+5=a^2=3^2=9\)

\(\Rightarrow4n=4\)

\(\Rightarrow n=1\)

        Vậy n=1

9 tháng 3 2022

-Vì 4n+5, 9n+7 đều là các số chính phương nên đặt \(4n+5=a^2;9n+7=b^2\)

\(\Rightarrow9\left(4n+5\right)=9a^2;4\left(9n+7\right)=4b^2\)

\(\Rightarrow36n+45=9a^2;36n+28=4b^2\)

\(\Rightarrow9a^2-4b^2=36n+45-\left(36n+28\right)=17\)

\(\Rightarrow\left(3a-2b\right)\left(3a+2b\right)=1.17\)

-Vì \(3a-2b< 3a+2b\)

\(\Rightarrow\left[{}\begin{matrix}3a-2b=1\\3a+2b=17\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=3\\b=4\end{matrix}\right.\)

-Vậy \(n=1\) thì 4n+5 và 9n+7 là các số chính phương.

11 tháng 6 2021

a) Đặt A = 20184n + 20194n + 20204n

= (20184)n + (20194)n + (20204)n

= (....6)n + (....1)n + (....0)n

= (...6) + (...1) + (...0) = (....7) 

=> A không là số chính phương

b) Đặt 1995 + n = a2 (1) 

2014 + n = b2 (2)

a;b \(\inℤ\)

=> (2004 + n) - (1995 + n) = b2 - a2

=> b2 - a2 = 9

=> b2 - ab + ab - a2 = 9

=> b(b - a) + a(b - a) = 9

=> (b + a)(b - a) = 9

Lập bảng xét các trường hợp

b - a19-1-93-3
b + a91-9-1-33
a-444-4-33
b55-5-500

Từ a;b tìm được thay vào (1)(2) ta được 

n = -1979 ; n = -2014 ; 

AH
Akai Haruma
Giáo viên
15 tháng 12 2022

Lời giải:
Đặt $n+31=a^2$ với $a$ tự nhiên. Khi đó: $2n+5=2(a^2-31)+5=2a^2-57$
Như vậy, ta cần tìm $a$ sao cho $2a^2-57$ là số chính phương.

Ta có 1 tính chất quen thuộc: Số chính phương lẻ chia 8 dư $1$ (bạn có thể xét 1 scp $x^2$ và xét các TH $x=4k+...$ để cm)

$\Rightarrow 2a^2-57\equiv 1\pmod 8$

$\Rightarrow 2a^2\equiv 58\pmod 8$

$\Rightarrow a^2\equiv 29\equiv 5\pmod 8$

(điều này vô lý do scp chia 8 dư 0,1 hoặc 4)

Vậy không tồn tại số tự nhiên $a$, tức là không tồn tại số $n$ cần tìm.

4 tháng 1 2016

18 nha

TICK ĐI LÀM ƠN