Cho tam giác ABC trung tuyến AM. Gọi I là trung điiểm AM. Đường thẳng CI và AB cắt nhau tại D. CMR: AD= \(\frac{1}{3}\)AB( giải= nhiều cách)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Việt Tiến - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
Câu hỏi của Nguyễn Việt Tiến - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là trung tuyến
nên AM là đường cao
BC=12cm nên BM=6cm
=>AM=8(cm)
c: I cách đều ba cạnh nên I là giao điểm của ba đường phân giác
=>AI là phân giác của góc BAC
mà AM là phân giác của góc BC
nên A,I,M thẳng hàng
Do ME là đường trung bình của tam giác BDC nên \(ME//DC\)
Mặt khác I là trung điểm của AM;\(DI//EM\Rightarrow DE=DA\)
Mà \(ME=ED\) vì E trung điểm.
Vậy \(AD=DE=EB\)
Bổ sung chút cho bài của bạn Cood Kid
Gọi E là trung điểm BD
Xét tam giác BCD có M là trung điểm BC, E là trung điểm BD
=> ME là đường trung bình của tam giác BCD.
Trên tia đối của MP lấy điểm D sao cho MP=MD.
Ta có: \(\Delta\)MBP=\(\Delta\)MCD (c.g.c) => BP=CD (2 cạnh tương ứng)
Mà BP=CQ => CD=CQ => \(\Delta\)DCQ cân tại C => ^CQD= (1800-^DCQ)/2
=> ^MPB=^MDC (2 góc tương ứng) ở vị trí so le trong => AB//CD => ^DCQ=^IAK (Đồng vị)
M là trung điểm PD, N là trung điểm PQ => MN là đường trung bình của \(\Delta\)PDQ
=> MN//DQ hay IK//DQ => ^CQD=^AKI (Đồng vị)
=> \(\Delta\)AIK có: ^AKI= (1800-^IAK)/2 = (1800-^DCQ)/2 = ^CQD
=> Tam giác AIK cân tại A (đpcm)
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Câu hỏi của Phan Thủy Tiên - Toán lớp 8 - Học toán với OnlineMath
Em tham 1 cách ở link này nhé!
Vì AD=DE=EB
=> AD=1/3 AB