cho tam giác ABC điểm M là trung điểm BC sao cho góc MAB bằng 15 độ MAC bằng 30 độ tìm số đo các góc tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AB}{4}=\dfrac{AC}{5}=\dfrac{BC}{6}=\dfrac{AB+AC+BC}{4+5+6}=\dfrac{30}{15}=2\)
Do đó: AB=8cm; AC=10cm; BC=12cm
=>\(\widehat{C}< \widehat{B}< \widehat{A}\)
b: \(\cos MAB=\dfrac{AB^2+AM^2-BM^2}{2\cdot AB\cdot AM}=\dfrac{AB^2+AM^2-CM^2}{2\cdot AB\cdot AM}\)
\(\cos MAC=\dfrac{AM^2+AC^2-MC^2}{2\cdot AM\cdot AC}\)
mà \(\dfrac{AB^2+AM^2-MC^2}{2\cdot AM\cdot AC}< \dfrac{AM^2+AC^2-MC^2}{2\cdot AM\cdot AC}\)
nên \(\widehat{MAB}>\widehat{MAC}\)
Lấy F là điểm đối xứng với B qua AM, gọi O là giao điểm của BF với AM
\(\Delta\)AOB vuông tại O có ^MAB = 300 (gt) nên ^ABO = 600
Lại có: AF = AB (theo tính chất đối xứng) nên \(\Delta\)AFB đều => ^AFB = 600
\(\Delta\)AFB đều có AO là đường cao nên cũng là trung tuyến => FO = OB
Có M là trung điểm của BC, O là trung điểm của FB nên OM là đường trung bình của \(\Delta\)BFC
=> OM // CF mà OM\(\perp\)FB nên BF\(\perp\)FC => \(\Delta\)BFC vuông tại F hay ^BFC = 900
Ta có: ^CFA = ^BFC + ^BFA = 900 + 600 = 1500
\(\Delta\)AFB đều có AO là đường cao nên cũng là phân giác => ^OAF = 300 => ^FAC = 150
Suy ra ^FCA = 150 hay \(\Delta\)CFA cân tại F => CF = AF
Mà AF = FB nên BF = FC do đó \(\Delta\)BFC vuông cân tại F => ^FBC = 450
=> ^ABC = ^CBF + ^FBA = 450 + 600 = 1050
Vậy ^BCA = 1800 - 1050 - (150 + 300) = 300
a) Xét ΔABMΔ��� có :
ˆMAB=ˆMBA(gt)���^=���^(��)
=> ΔABMΔ��� cân tại M
Do đó ta có : ˆAMB=180o−(ˆMAB+ˆMBA)���^=180�−(���^+���^) (tổng 3 góc của 1 tam giác)
=> ˆAMB=180o−2.30o=120o���^=180�−2.30�=120�
Ta có : ˆBAC=ˆMAB−ˆMAC���^=���^−���^
=> 90o=30o−ˆMAC90�=30�−���^
=> ˆMAC=90o−60o���^=90�−60�
=> ˆMAC=60o���^=60�
b) Có : ˆAMB+ˆAMC=180o���^+���^=180� (kề bù)
=> 120o+ˆAMC=180o120�+���^=180�
=> ˆAMC=180o−120o���^=180�−120�
=> ˆAMC=60o���^=60�
Xét ΔAMCΔ��� có :
ˆMAC=ˆAMC(=60o)���^=���^(=60�)
=> ΔAMCΔ��� cân tại A
Mà có : ˆACM=180o−(ˆMAC+ˆAMC)���^=180�−(���^+���^) (tổng 3 góc của 1 tam giác)
=> ˆACM=180o−2.60o=60o���^=180�−2.60�=60�
Thấy : ˆAMC=ˆMAC=ˆACM=60o���^=���^=���^=60�
Do đó ΔAMCΔ��� là tam giác đều (đpcm)
- Ta có : Do ΔAMBΔ��� cân tại A (cmt - câu a) (1)
=> BM=AM��=�� (tính chất tam giác cân)
Mà có : ΔAMCΔ��� cân tại M (cmt)
=> AM=MC��=�� (tính chất tam giác cân) (2)
- Từ (1) và (2) => BM=MC(=AC)��=��(=��)
Mà : BM=12BC��=12��
Do vậy : AC=12BC
a: Xét ΔMAB có góc MAB=góc MBA
nên ΔMAB cân tại M
=>góc AMB=180-2*30=120 độ và góc MAC=90-30=60 độ
b: Xét ΔMAC có góc MAC=góc MCA=60 độ
nên ΔMAC đều
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
A\(=45\)
B\(=75\)
C\(=\)60
bạn có thế trình bày rõ hơn được hơn, cụ thể là cách trình bày ý
nếu ko thì bạn có thể viết ý rồi để mình trình bày cung đc