K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2020

A\(=45\)

B\(=75\)

C\(=\)60

16 tháng 2 2022

bạn có thế trình bày rõ hơn được hơn, cụ thể là cách trình bày ý
nếu ko thì bạn có thể viết ý rồi để mình trình bày cung đc

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AB}{4}=\dfrac{AC}{5}=\dfrac{BC}{6}=\dfrac{AB+AC+BC}{4+5+6}=\dfrac{30}{15}=2\)

Do đó: AB=8cm; AC=10cm; BC=12cm

=>\(\widehat{C}< \widehat{B}< \widehat{A}\)

b: \(\cos MAB=\dfrac{AB^2+AM^2-BM^2}{2\cdot AB\cdot AM}=\dfrac{AB^2+AM^2-CM^2}{2\cdot AB\cdot AM}\)

\(\cos MAC=\dfrac{AM^2+AC^2-MC^2}{2\cdot AM\cdot AC}\)

mà \(\dfrac{AB^2+AM^2-MC^2}{2\cdot AM\cdot AC}< \dfrac{AM^2+AC^2-MC^2}{2\cdot AM\cdot AC}\)

nên \(\widehat{MAB}>\widehat{MAC}\)

12 tháng 11 2020

Lấy F là điểm đối xứng với B qua AM, gọi O là giao điểm của BF với AM

\(\Delta\)AOB vuông tại O có ^MAB = 300 (gt) nên ^ABO = 600

Lại có: AF = AB (theo tính chất đối xứng) nên \(\Delta\)AFB đều => ^AFB = 600

\(\Delta\)AFB đều có AO là đường cao nên cũng là trung tuyến => FO = OB

Có M là trung điểm của BC, O là trung điểm của FB nên OM là đường trung bình của \(\Delta\)BFC

=> OM // CF mà OM\(\perp\)FB nên BF\(\perp\)FC => \(\Delta\)BFC vuông tại F hay ^BFC = 900

Ta có: ^CFA = ^BFC + ^BFA = 900 + 600 = 1500

\(\Delta\)AFB đều có AO là đường cao nên cũng là phân giác => ^OAF = 300 => ^FAC = 150

Suy ra ^FCA = 150 hay \(\Delta\)CFA cân tại F => CF = AF

Mà AF = FB nên BF = FC do đó \(\Delta\)BFC vuông cân tại F => ^FBC = 450

=> ^ABC = ^CBF + ^FBA = 450 + 600 = 1050

Vậy ^BCA = 1800 - 1050 - (150 + 300) = 300

26 tháng 3 2016

Các bạn trả lời hộ mình đi

6 tháng 3 2023

a) Xét ΔABMΔ��� có :

ˆMAB=ˆMBA(gt)���^=���^(��)

=> ΔABMΔ��� cân tại M

Do đó ta có : ˆAMB=180o−(ˆMAB+ˆMBA)���^=180�−(���^+���^) (tổng 3 góc của 1 tam giác)

=> ˆAMB=180o−2.30o=120o���^=180�−2.30�=120�

Ta có : ˆBAC=ˆMAB−ˆMAC���^=���^−���^

=> 90o=30o−ˆMAC90�=30�−���^

=> ˆMAC=90o−60o���^=90�−60�

=> ˆMAC=60o���^=60�

b) Có : ˆAMB+ˆAMC=180o���^+���^=180� (kề bù)

=> 120o+ˆAMC=180o120�+���^=180�

=> ˆAMC=180o−120o���^=180�−120�

=> ˆAMC=60o���^=60�

Xét ΔAMCΔ��� có :

ˆMAC=ˆAMC(=60o)���^=���^(=60�)

=> ΔAMCΔ��� cân tại A

Mà có : ˆACM=180o−(ˆMAC+ˆAMC)���^=180�−(���^+���^) (tổng 3 góc của 1 tam giác)

=> ˆACM=180o−2.60o=60o���^=180�−2.60�=60�

Thấy : ˆAMC=ˆMAC=ˆACM=60o���^=���^=���^=60�

Do đó ΔAMCΔ��� là tam giác đều (đpcm)

- Ta có : Do ΔAMBΔ��� cân tại A (cmt - câu a) (1)

=> BM=AM��=�� (tính chất tam giác cân)

Mà có : ΔAMCΔ��� cân tại M (cmt)

=> AM=MC��=�� (tính chất tam giác cân) (2)

- Từ (1) và (2) => BM=MC(=AC)��=��(=��)

Mà : BM=12BC��=12��

Do vậy : AC=12BC

a: Xét ΔMAB có góc MAB=góc MBA

nên ΔMAB cân tại M

=>góc AMB=180-2*30=120 độ và góc MAC=90-30=60 độ

b: Xét ΔMAC có góc MAC=góc MCA=60 độ

nên ΔMAC đều

28 tháng 11 2015

Mk chua hoc tam giac can 

27 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)