Tìm mọi số nguyên x sao cho \(x^3-2x^2+7x-7\)chia hết cho \(x^2+3\)
Mình sử dụng cách chia thì ra \(x=\frac{1}{4}\)đầu bài thì là x nguyên nhưng mà x=2 thay vào lại chia hết
Ai bít làm ko chỉ mình vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
khó gì:
cách 1 : biến đổi vế trước giống vế sau
cách 2 : lấy vế trước trừ vế sau
bài này làm ra thì dài lắm
nha , sau đó tui giải cho
à , kết bạn luôn cho nó vui
6 là bội của n+1
=> 6 chia hết cho n+1
=> n+1 thuộc Ư(6)={-1,-2,-3,-6,1,2,3,6}
Ta có bảng :
n+1 | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
n | -2 | -3 | -4 | -7 | 0 | 1 | 2 | 5 |
Vậy n={-7,-4,-3,-2,0,1,2,5}
Bài 1:
\(^{n^2+15}\)là số chính phương nên đặt \(n^2+15=a^2\left(a\in N\right)\)
\(\Rightarrow n^2-a^2=-15\Rightarrow n^2-an+an-a^2=-15\Rightarrow\left(n^2-an\right)+\left(an-a^2\right)=-15\)
\(\Rightarrow n\left(n-a\right)+a\left(n-a\right)=-15\Rightarrow\left(n+a\right)\left(n-a\right)=-15\)
Vì \(a,n\in N\Rightarrow n-a\le n+a\)
Xét các trường hợp, bài toán đưa về dạng tổng-hiệu:
TH1:\(\hept{\begin{cases}n-a=-1\\n+a=15\end{cases}\Rightarrow\left(n,a\right)=\left(8,7\right)}\Rightarrow n=8\)
TH2:\(\hept{\begin{cases}n-a=-3\\n+a=5\end{cases}\Rightarrow n=1}\)
TH3:\(\hept{\begin{cases}n-a=-5\\n+a=3\end{cases}\Rightarrow n=-1\notin N\Rightarrow}\)loại
TH4\(\hept{\begin{cases}n-a=-15\\n+a=1\end{cases}\Rightarrow n=-7\notin N\Rightarrow}\)loại
2 bài còn lại dễ ,bạn tự làm nhé
Thực hiện phép chia ta có:
Ta có: \(x^3-2x^2+7x-7=\left(x^2+3\right)\left(x-2\right)+4x-1\)
\(x^3-2x^2+7x-7\) chia hết cho \(x^2+3\)
=> \(4x-1⋮x^2+3\) (1)
=> \(4x^2-x=x\left(4x-1\right)⋮x^2+3\)
Mà: \(4x^2+12=4\left(x^2+3\right)⋮x^2+3\)
=> \(\left(4x^2-x\right)-\left(4x^2+12\right)⋮x^2+3\)
=> \(-x-12⋮x^2+3\)
=> \(x+12⋮x^2+3\)
=> \(4x+48⋮x^2+3\) (2)
Từ (1); (2) => \(\left(4x+48\right)-\left(4x-1\right)⋮x^2+3\)
=> \(49⋮x^2+3\)
=> \(x^2+3\in\left\{\pm1;\pm7;\pm49\right\}\) vì \(x^2+3\ge3\) với mọi x
=> \(\begin{cases}x^2+3=7\\x^2+3=49\end{cases}\Rightarrow\orbr{\begin{cases}x^2=4\\x^2=46\left(loại\right)\end{cases}}\)
Với \(x^2=4\Rightarrow x=\pm2\) thử vào bài toán x=-2 loại. x=2 thỏa mãn
Vậy x=2
Em cảm ơn cô