1 tính thuận loi:
\(B=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{25}+\frac{1}{27}\right):\left(\frac{1}{1.27}+\frac{1}{3.25}+\frac{1}{5.23}+...+\frac{1}{25.3}+\frac{1}{27.1}\right)\)
2. Tìm x:
\(a.6,5-\frac{9}{4}:|x+\frac{1}{3}|=2\)
\(b.x^{2020}-x^{2018}=0\)
a
\(6,5-\frac{9}{4}:\left|x+\frac{1}{3}\right|=2\)
\(\Leftrightarrow\frac{9}{4}:\left|x+\frac{1}{3}\right|=4,5\)
\(\Leftrightarrow\frac{9}{4}:\frac{9}{2}=\left|x+\frac{1}{3}\right|\)
\(\Leftrightarrow\left|x+\frac{1}{3}\right|=\frac{1}{2}\)
\(TH1:x+\frac{1}{3}=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{1}{6}\)
\(TH1:x+\frac{1}{3}=-\frac{1}{2}\)
\(\Leftrightarrow x=-\frac{5}{6}\)
b
\(x^{2020}-x^{2018}=0\)
\(\Leftrightarrow x^{2018}\left(x^2-1\right)=0\)
\(\Leftrightarrow x^{2018}\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow x=1;x=-1;x=0\)
1. Chú ý này: 1+27=3+25=5+23=...=25+3=27+1=28
Giải:
Đặt:
\(C=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{25}+\frac{1}{27}\)
\(A=\frac{1}{1.27}+\frac{1}{3.25}+\frac{1}{5.23}+...+\frac{1}{13.15}+\frac{1}{15.13}+...+\frac{1}{25.3}+\frac{1}{27.1}\)
=> \(A=2\left(\frac{1}{1.27}+\frac{1}{3.25}+\frac{1}{5.23}+...+\frac{1}{13.15}\right)\)
=> \(14.A=28\left(\frac{1}{1.27}+\frac{1}{3.25}+\frac{1}{5.23}+...+\frac{1}{13.15}\right)\)
\(=\frac{28}{1.27}+\frac{28}{3.25}+\frac{28}{5.23}+...+\frac{28}{13.15}\)
\(=\frac{1+27}{1.27}+\frac{3+25}{3.25}+\frac{5+23}{5.23}+...+\frac{13+15}{13.15}\)
\(=1+\frac{1}{27}+\frac{1}{3}+\frac{1}{25}+\frac{1}{5}+\frac{1}{23}+...+\frac{1}{13}+\frac{1}{15}\)
\(=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}\)
=> \(A=\frac{1}{14}\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{27}\right)=\frac{1}{14}C\)=> C=14A
=> \(B=C:A\)=14A:A=14