K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2021

Bài 11:
a: \(\sqrt{18}+3\sqrt{50}-\sqrt{98}\)

\(=3\sqrt{2}+15\sqrt{2}-7\sqrt{2}\)

\(=11\sqrt{2}\)

c: \(\sqrt{20}+\sqrt{80}-\sqrt{45}\)

\(=2\sqrt{5}+4\sqrt{5}-3\sqrt{5}\)

\(=3\sqrt{5}\)

10 tháng 10 2021

Trình bày dễ hiểu, đừng làm tắt ạ!

28 tháng 10 2021

Kẻ đường cao AH

Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Áp dụng HTL: \(BH=\dfrac{AB^2}{BC}=\dfrac{18}{5}\left(cm\right);AH=\dfrac{AB\cdot AC}{BC}=\dfrac{24}{5}\left(cm\right)\)

Vì AD là p/g nên \(\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow BD=\dfrac{3}{4}DC\)

Mà \(BD+DC=BC=10\Rightarrow\dfrac{7}{4}DC=10\Rightarrow DC=\dfrac{40}{7}\left(cm\right)\)

\(\Rightarrow BD=\dfrac{30}{7}\left(cm\right)\)

\(\Rightarrow HD=BD-BH=\dfrac{30}{7}-\dfrac{18}{5}=\dfrac{24}{35}\)

Áp dụng PTG: \(AD=\sqrt{AH^2+HD^2}=\sqrt{\left(\dfrac{24}{35}\right)^2+\left(\dfrac{24}{5}\right)^2}=\dfrac{24\sqrt{2}}{7}\approx4,85\left(cm\right)\)

 

Bài 5: 

Xét ΔBAC có 

FG//AC

nên \(\dfrac{FG}{AC}=\dfrac{BG}{BC}=\dfrac{1}{2}\)

hay AC=16(m)

5 tháng 3 2022

1. Turn on (please+Vo)

2. Turned / off (was chia qk)

3. Look for

4. Got up (because S+ had+V3/ed, S+V2/ed)

5. Ran into( hai hd lien tiep)

6. Goes on (after S+V2/ed, S+Vht)

23 tháng 12 2021

c)\(\left\{{}\begin{matrix}u_1+u_3=3\\u_1^2+u_3^2=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u_1+u_3=3\\\left(u_1+u_3\right)^2-2u_1u_3=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u_1+u_3=3\\u_1u_3=2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}u_1=2\\u_3=1\end{matrix}\right.\\\left\{{}\begin{matrix}u_1=1\\u_3=2\end{matrix}\right.\end{matrix}\right.\)

Làm nốt (sử dụng công thức: \(u_n=u_1+\left(n-1\right)d\) để tìm được công sai

\(S_n=nu_1+\dfrac{n\left(n-1\right)}{2}d\) để tính tổng 15 số hạng đầu)

d)\(\left\{{}\begin{matrix}u_1+u_2+u_3=14\\u_1u_2u_3=64\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u_2-d+u_2+u_2+d=14\\\left(u_2-d\right)u_2\left(u_2+d\right)=64\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u_2=\dfrac{14}{3}\\\left(u_2^2-d^2\right)u_2=64\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\dfrac{14}{3}=u_2=u_1+d\\d=\dfrac{2\sqrt{889}}{21}\end{matrix}\right.\\\left\{{}\begin{matrix}\dfrac{14}{3}=u_1+d\\d=\dfrac{-2\sqrt{889}}{21}\end{matrix}\right.\end{matrix}\right.\) 

(Làm nốt,số xấu quá)

e)\(\left\{{}\begin{matrix}u_1+u_2+u_3=7\\u_1^2+u_2^2+u_3^2=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u_1+u_2+u_3=7\\u_1u_2u_3=\dfrac{21-\left(u_1+u_2+u_3\right)^2}{2}=-14\end{matrix}\right.\)

Làm như ý d)

24 tháng 12 2021

bạn tính thử cho mình tổng câu c được không ạ, tại mình chưa hiểu lắm á

a: Xét tứ giác AOBM có

góc OAM+góc OBM=180 độ

=>AOBM nội tiếp

b: \(cosAOM=\dfrac{OA}{OM}=\dfrac{1}{3}\)

nên \(\widehat{AOM}\simeq71^0\)

=>\(\widehat{AOB}\simeq142^0\)

=>sđ cung nhỏ AB là 142 độ; sđ cung lơn AB=360-142=218 độ

c:

Xét (O) có

ΔBAC nội tiếp

BC là đường kính

=>ΔBAC vuông tại A

=>BA vuông góc AC

Xét(O) có

MA,MB là tiêp tuyến

nên MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM//AC

góc ACB=góc OAC

góc OAC=góc AOM

=>góc ACB=góc AOM=góc BOM

d: góc DOM+góc BOM=90 độ

góc DMO+góc AOM=90 độ

mà góc BOM=góc AOM

nên góc DOM=góc DMO

=>DO=DM

25 tháng 2 2023

 

2:

1+cot^2a=1/sin^2a

=>1/sin^2a=1681/81

=>sin^2a=81/1681

=>sin a=9/41

=>cosa=40/41

tan a=1:40/9=9/40