Tìm số nguyên dương n lớn nhất để \(A=4^{27}+4^{2016}+4^n\) là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=4^{27}+4^{2016}+4^n\)
Với \(n\ge27\):
\(A=4^{27}\left(1+4^{1989}+4^{n-27}\right)\)
\(A\)là số chính phương suy ra \(B=4^{n-27}+4^{1989}+1\)là số chính phương.
\(B=\left(2^{n-27}\right)^2+2^{3978}+1\)
\(=\left(2^{3977+n-4004}\right)^2+2.2^{3977}+1\)
Với \(n=4004\)thì:
\(B=\left(2^{3977}\right)^2+2.2^{3977}+1=\left(2^{3977}+1\right)^2\)là số chính phương.
Với \(n>4004\)thì:
\(B>\left(2^{3977+n-4004}\right)^2\)
\(B< \left(2^{3977+n-4004}\right)^2+2.2^{3977+n-4004}+1\)
\(=\left(2^{3977+n-4004}+1\right)^2\)
Suy ra \(\left(2^{3977+n-4004}\right)^2< B< \left(2^{3977+n-4004}+1\right)^2\)do đó \(B\)không là số chính phương.
Vậy giá trị lớn nhất của \(n\)là \(4004\).
+) Xét n≥27n≥27
Ta có : A=427+42016+4n=427⋅(1+41989+4n−27)A=427+42016+4n=427⋅(1+41989+4n−27)
Dễ thấy 427=22⋅27=(227)2427=22⋅27=(227)2 là số chính phương
Do đó để A là số chính phương thì 1+41989+4n−271+41989+4n−27 là số chính phương
Đặt B2=1+41989+4n−27B2=1+41989+4n−27 và n−27=kn−27=k
Khi đó : B2=1+41989+4kB2=1+41989+4k
⇔B2−(2k)2=1+41989⇔B2−(2k)2=1+41989
⇔(B−2k)(B+2k)=1+41989⇔(B−2k)(B+2k)=1+41989
Ta có : B+2k≤1+41989B+2k≤1+41989 và B−2k≥1B−2k≥1
⇒B−2k+41989≥1+41989≥B+2k⇒B−2k+41989≥1+41989≥B+2k
Hay B−2k+41989≥B+2kB−2k+41989≥B+2k
⇔2⋅2k≤41989⇔2⋅2k≤41989
⇔2k+1≤23978⇔2k+1≤23978
⇔k+1≤3978⇔k+1≤3978
⇔k≤3977⇔k≤3977
Để n lớn nhất thì k lớn nhất,nên:
Nếu k=3977k=3977 ta có B2=1+41989+43977B2=1+41989+43977
⇔B2=(23977)2+2⋅23977+1⇔B2=(23977)2+2⋅23977+1
⇔B2=(23977+1)2⇔B2=(23977+1)2( đúng )
Vậy k=3977⇒n=3977+27=4004k=3977⇒n=3977+27=4004( thỏa )
+) Xét n≤27n≤27 nên hiển nhiên n≤4004n≤4004
Suy ra n lớn nhất để A là số chính phương thì n=4004
Nếu thấy đúng thì k cho mình nha
\(A=4^{27}+4^{2016}+4^n\)
Với \(n\ge27\):
\(A=4^{27}\left(1+4^{1989}+4^{n-27}\right)\)
\(A\)là số chính phương suy ra \(B=4^{n-27}+4^{1989}+1\)là số chính phương.
\(B=\left(2^{n-27}\right)^2+2^{3978}+1\)
\(=\left(2^{3977+n-4004}\right)^2+2.2^{3977}+1\)
Với \(n=4004\)thì:
\(B=\left(2^{3977}\right)^2+2.2^{3977}+1=\left(2^{3977}+1\right)^2\)là số chính phương.
Với \(n>4004\)thì:
\(B>\left(2^{3977+n-4004}\right)^2\)
\(B< \left(2^{3977+n-4004}\right)^2+2.2^{3977+n-4004}+1\)
\(=\left(2^{3977+n-4004}+1\right)^2\)
Suy ra \(\left(2^{3977+n-4004}\right)^2< B< \left(2^{3977+n-4004}+1\right)^2\)do đó \(B\)không là số chính phương.
Vậy giá trị lớn nhất của \(n\)là \(4004\).
Nếu x≥27 thì T=427(1+473+4a-27)
Do 427 chính phương nên T chính phương khi 1+473+4a-27 chính phương.
Đặt 1+473+4a-27=n2
Có n2> 4a-27 = (2a-27 )2 nên n2≥(2a-27+1)2
Suy ra 1+473+4a-27 ≥ (2a-27+1)2 = 4a-27+2a-26 +1
=> 473 ≥ 2 a-26
hay 73.2 ≥ a−26
vậy a ≤ 172
Thay a =172 có T = 427.(1+2145)2 là số chính phương.
Vậy a lớn nhất bằng 172
+) Xét \(n\ge27\)
Ta có : \(A=4^{27}+4^{2016}+4^n=4^{27}\cdot\left(1+4^{1989}+4^{n-27}\right)\)
Dễ thấy \(4^{27}=2^{2\cdot27}=\left(2^{27}\right)^2\) là số chính phương
Do đó để A là số chính phương thì \(1+4^{1989}+4^{n-27}\) là số chính phương
Đặt \(B^2=1+4^{1989}+4^{n-27}\) và \(n-27=k\)
Khi đó : \(B^2=1+4^{1989}+4^k\)
\(\Leftrightarrow B^2-\left(2^k\right)^2=1+4^{1989}\)
\(\Leftrightarrow\left(B-2^k\right)\left(B+2^k\right)=1+4^{1989}\)
Ta có : \(B+2^k\le1+4^{1989}\) và \(B-2^k\ge1\)
\(\Rightarrow B-2^k+4^{1989}\ge1+4^{1989}\ge B+2^k\)
Hay \(B-2^k+4^{1989}\ge B+2^k\)
\(\Leftrightarrow2\cdot2^k\le4^{1989}\)
\(\Leftrightarrow2^{k+1}\le2^{3978}\)
\(\Leftrightarrow k+1\le3978\)
\(\Leftrightarrow k\le3977\)
Để n lớn nhất thì k lớn nhất, do đó:
Giả sử \(k=3977\) ta có \(B^2=1+4^{1989}+4^{3977}\)
\(\Leftrightarrow B^2=\left(2^{3977}\right)^2+2\cdot2^{3977}+1\)
\(\Leftrightarrow B^2=\left(2^{3977}+1\right)^2\)( đúng )
Vì vậy \(k=3977\Rightarrow n=3977+27=4004\)( thỏa )
+) Xét \(n\le27\) nên hiển nhiên \(n\le4004\)
Vậy n lớn nhất để A là số chính phương thì \(n=4004\)
Akai Haruma