K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

https://olm.vn/hoi-dap/detail/96788252350.html

Tham khảo ở link này (mình gửi cho)

Hoc tốt!!!!!!!!!!!!

4 tháng 1 2018

Bạn xem lời giải ở đây nhé:

Câu hỏi của Quốc Lê Minh - Toán lớp 8 - Học toán với OnlineMath

4 tháng 1 2018

A B C D M N P 1 2 K H 2 H 1

a)  Ta có DM song song và bằng BN nên BMDN là hình bình hành (vì có 2 cạnh đối song song và bằng nhau)

b) Tam giác CDN bằng tam giác DAP (cạnh - góc - cạnh)

=> Góc D1 = góc A1

Ta lại có Góc D2 + Góc D1 = Góc D = 90 độ

=> Góc D2 + Góc A1 = 90 đo

Trong tam giác KAD có tổng 2 góc A và D bằng 90 độ nên góc K bằng 90 độ 

=> AP vuông góc với DN

c) Tương tự câu b ta có BM vuông góc với AP

=> BM // DN (vì cùng vuông góc vời AP)

=> BMKN là hình thang.

Theo câu b tam giác KAD vuông tại K có KM là trung tuyến ứng với cạnh huyền => KM = 1/2 AD

=> KM = BN

=> BMKN là hình thang cân

d) \(DP=\frac{1}{2}\sqrt{5},AP=\sqrt{5-\frac{1}{4}5}=\frac{\sqrt{15}}{2}\)

  \(DP^2=PK.PA\)

=> \(PK=\frac{DP^2}{PA}=\frac{\frac{5}{4}}{\frac{\sqrt{15}}{2}}=\frac{\sqrt{15}}{6}\)

=> \(\frac{PK}{PA}=\frac{\frac{\sqrt{15}}{6}}{\frac{\sqrt{15}}{2}}=\frac{1}{3}\)

=> Đường cao hạ từ K xuống DC bằng 1/3 đường cao hạ từ A xuống DC

=> Đường cao hạ từ K xuống DC = \(\frac{1}{3}\sqrt{5}\)

=> Đường cao hạ từ K xuống MN bằng \(\frac{1}{2}\sqrt{5}-\frac{1}{3}\sqrt{5}=\frac{\sqrt{5}}{6}\)

=> Diện tích KMN bằng \(\frac{1}{2}.MN.KH_2=\frac{1}{2}\sqrt{5}\frac{\sqrt{5}}{6}=\frac{5}{12}\)

6 tháng 1 2017

Xét 2 tam giác vuông BMC và CND có : 
BM=CN (bằng nửa cạnh hình vuông); BC=CD 
=> Tam giác BMC = Tam giác CND (c.g.c) 
=> Góc BCM = Góc CDN 
mà Góc BCM + góc DCM = 90 độ 
=> Góc CDN + Góc DCN = 90 độ 
=> Tam giác CDI vuông tại I 
=> CM vuông góc với DN 

Gọi P là trung điểm của CD, AP cắt DN tại H 
Ta có PC= 1/2 DC 
mà AM = 1/2 AB 
lại có AB=CD (vì ABCD là hình vuông) 
=> AM=PC 
mặt khác AM // PC (vì AB // CD) 
=> AMCP là hình bình hành 
=> AP // CM 
mà CM vuông góc với DN (cmt) 
=> AP vuông góc với DN tại H 
Tam giác CDI có CP= DP, PH // CI (vì AP // CM) 
=> DH=HI 
Tam giác ADI có AH là đường cao (vì AH vuông góc với DI) 
AH là trung tuyến (vì DH= HI) 
=> Tam giác ADI cân tại A 
=> AI = AD

8 tháng 12 2018

GIÚP MÌNH ĐI! GẤP LĂM! SÁNG 9/12/2018 LÀ MÌNH PHẢI NỘP RỒI.

8 tháng 12 2018

A B C D M N I K E N P a) MN là dường trung bình tam giác ABD,PE là đường trung bình tam giác ACD=>MN//AD,PQ//AD=>PE//MN. 

tương tự, ta có: NQ//MP.     ==>MNQP laf hbh.

b) IP là đường trung bình tam giác ADC=>IP //CD, KN là đường trung bình tam giác BDC=>KN //CD, IK là đường trung bình hình thang ABCD=>IK //CD  .==>NP // CD(theo tiên đề ơ-clit).

 còn câu c bạn cố gắng nha, khuya quá mẹ mk bắt ngủ nên ko ghi rõ ra, phần đường trung bình là do có các trung điểm đã cho. thông cảm nha

a: Xét tứ giác AECK có

AK//CE

AK=CE

=>AECK là hình bình hành

b: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

AKCE là hbh

=>AC cắt KE tại trung điểm của mỗi đường

=>O là trung điểm của KE

c: Xét ΔDMC có

E là trung điểm của DC

EN//MC

=>N là trung điểm của DM

=>DN=NM

Xét ΔABN có

K là trung điểm của BA

KM//AN

=>M là trung điểm của BN

=>DN=MN=MB

2 tháng 2 2018

a) Ta có AB // CD (gt)

Suy ra AM // CP    (1)

Lại có AM = AB/2; CP = CD/2    (2)

Từ (1) và (2) suy ra AMCP là hình bình hành

Suy ra AP // CM hay ES // FR.

Tương tự ta cũng chứng minh được tứ giác BQDN là hình bình hành nên BQ // DN. Suy ra EF // RS.

Vậy tứ giác EFRS là hình bình hành

b) Đặt PS = x. Suy ra CR = 2x (tính chất đường trung bình)

Từ đó suy ra RF = ES = AE = 2x

Suy ra: ES = 2AP/5 => SEFRS = 2SAMCP/5

Vì SAMCP = SABCD/2 nên SEFRS = SABCD/2