giải phương trình sau:
\(\frac{x}{40}-1=\frac{\frac{x}{2}-60}{40}+\frac{\frac{x}{2}+60}{50}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\hept{\begin{cases}x-y=20\\\frac{y-x}{xy}=\frac{1}{120}\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y=20\\xy=-2400\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=x-20\\x\left(x-20\right)+2400=0\end{cases}}\)
Đến đây dễ rồi nhé
\(\frac{x+10}{90}+\frac{x+20}{80}+\frac{x+30}{70}+\frac{x+40}{60}+\frac{x+50}{50}=-5\)
<=> \(\frac{x+10}{90}+1+\frac{x+20}{80}+1+\frac{x+30}{70}+1+\frac{x+40}{60}+1+\frac{x+50}{50}+1=0\)
<=> \(\frac{x+100}{90}+\frac{x+100}{80}+\frac{x+100}{70}+\frac{x+100}{60}+\frac{x+100}{50}=0\)
<=> \(\left(x+100\right)\left(\frac{1}{90}+\frac{1}{80}+\frac{1}{70}+\frac{1}{60}+\frac{1}{50}\right)=0\)
<=> x + 100 = 0
<=> x = -100
Vậy x = -100
\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne30\\x\ne24\end{cases}}\)
Ta có \(\frac{60}{\frac{120}{x}-4}+\frac{60}{\frac{120}{x}-5}=x\)
\(\Leftrightarrow\frac{60}{\frac{120-4x}{x}}+\frac{60}{\frac{120-5x}{x}}=x\)
\(\Leftrightarrow\frac{60x}{120-4x}+\frac{60x}{120-5x}=x\)
\(\Leftrightarrow\frac{60}{120-4x}+\frac{60}{120-5x}=1\left(Do\text{ }x\ne0\right)\)
\(\Leftrightarrow\frac{15}{30-x}=1-\frac{12}{24-x}\)
\(\Leftrightarrow\frac{15}{30-x}=\frac{24-x-12}{24-x}\)
\(\Leftrightarrow\frac{15}{30-x}=\frac{12-x}{24-x}\)
\(\Leftrightarrow360-15x=\left(12-x\right)\left(30-x\right)\)
\(\Leftrightarrow360-15x=360-42x+x^2\)
\(\Leftrightarrow x^2-27x=0\)
\(\Leftrightarrow x\left(x-27\right)=0\)
\(\Leftrightarrow x=27\left(Tm\text{ }ĐKXĐ\right)\)
\(\frac{6}{x-5}+\frac{2}{x-8}=\frac{18}{x^2-13x+40}-1\)
điều kiện: \(x\ne5;8\)
\(\frac{6\left(x-8\right)+2\left(x-5\right)}{\left(x-5\right)\left(x-8\right)}-\frac{18}{x^2-13x+40}+1=0\)
\(\frac{6x-48+2x-10}{\left(x-5\right)\left(x-8\right)}-\frac{18}{x^2-8x-5x+40}+1=0\)
\(\frac{8x-58}{\left(x-5\right)\left(x-8\right)}-\frac{18}{x\left(x-8\right)-5\left(x-8\right)}+1=0\)
\(\frac{8x-58}{\left(x-5\right)\left(x-8\right)}-\frac{18}{\left(x-5\right)\left(x-8\right)}+\frac{\left(x-5\right)\left(x-8\right)}{\left(x-5\right)\left(x-8\right)}=0\)
\(\frac{8x-58-18+x^2-13x+40}{\left(x-5\right)\left(x-8\right)}=0\)
\(\frac{x^2-5x-36}{\left(x-5\right)\left(x-8\right)}=0\)
=> \(x^2-5x-36=0\)
\(x^2+4x-9x-36=0\)
\(x\left(x+4\right)-9\left(x+4\right)=0\)
\(\left(x-9\right)\left(x+4\right)=0\)
Vậy x - 9 = 0 hoặc x + 4 = 0
hay x = 9 (thỏa mãn điều kiện) hoặc x = -4 (thỏa mãn điều kiện)
vậy...
\(\frac{6}{x-5}+\frac{2}{x-8}=\frac{18}{x^2-13x+40}-1\)
ĐKXĐ: \(x\ne5,8\)
\(\Leftrightarrow\frac{6}{x-5}+\frac{2}{x-8}=\frac{18}{\left(x-5\right)\left(x-8\right)}-1\)
\(\Leftrightarrow6\left(x-8\right)+2\left(x-5\right)=18-\left(x-5\right)\left(x-8\right)\)
\(\Leftrightarrow8x-58=-22-x^2+13x\)
\(\Leftrightarrow8x-58+22+x^2-13x=0\)
\(\Leftrightarrow-5x-36+x^2=0\)
\(\Leftrightarrow\left(x-9\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-9=0\\x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x=-4\end{cases}}\)
Vậy: phương trình có tập nghiệm là: S = {9; -4}
a,12x-180+10x-20+39x-2340+65x-4420=780
126x-6960=780
126x=7740
x=430/7
\(5x-200=\frac{5x}{2}-300+2x+300\)0
\(3x-2,5x=200\)\(0,5x=200\)\(x=400\)