K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2021

Điểm A ở đâu vậy bạn?

5 tháng 12 2017

Đáp án C

Tam giác ABC có góc A là góc tù nên Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Mà cạnh đối diện với góc A là cạnh BC .

Áp dụng định lí: trong 1 tam giác cạnh đối diện với góc lớn hơn thì lớn hơn ta được:

BC > AC và BC > AB

Vậy tam giác ABC có độ dài cạnh BC là lớn nhất nên dây BC gần tâm nhất.

Chưa thể kết luận dây nào xa tâm nhất.

AH
Akai Haruma
Giáo viên
3 tháng 3 2021

Hình vẽ:

undefined

 

AH
Akai Haruma
Giáo viên
3 tháng 3 2021

Lời giải:

$\widehat{BAC}=\frac{1}{2}\widehat{BOC}(1)$

$\widehat{BAC}=\frac{1}{2}(\text{sđc(BC)}-\text{sđc(MN nhỏ)})=\frac{1}{2}(\text{sđc(MB) nhỏ}+\text{sđc(NC) nhỏ})=\frac{1}{2}(\widehat{MIB}+\widehat{NIC})(2)$

Từ $(1);(2)\Rightarrow \widehat{MIB}+\widehat{NIC}=90^0$

$\Rightarrow \widehat{MIN}=90^0=\widehat{OIC}$

$\Rightarrow \widehat{MIO}=\widehat{NIC}$

$\Rightarrow \text{cung(MO)}=\text{cung(NC)}$

$\Rightarrow ONCM$ là hình thang cân (hệ quả quen thuộc)

$\Rightarrow MN=OC=R$

Ta có đpcm.

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán...
Đọc tiếp

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC

 Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.

Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.

Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC

Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.

Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.

Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC

Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.

Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.

Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.

Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC

0