Tìm giá trị của x,y biết :
a, x2 + y2 + 2x - 4y +5 = 0
b, x2 + 4y2 - x + 4y + 5/4 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
\(b,\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(c,\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
a,9x^2+y^2+2z^2−18x+4z−6y+20=0
⇔9(x−1)^2+(y−3)^2+2(z+1)^2=0
⇔x=1;y=3;z=−1
b,5x^2+5y^2+8xy+2y−2x+2=0
⇔4(x+y)2+(x−1)2+(y+1)2=0
⇔x=−y;x=1y=−1⇔x=1y=−1
c,5x^2+2y^2+4xy−2x+4y+5=0
⇔(2x+y)^2+(x−1)^2+(y+2)^2=0
⇔2x=−y;x=1;y=−2
⇔x=1;y=−2
d,x^2+4y^2+z^2=2x+12y−4z−14
⇔(x−1)^2+(2y−3)^2+(z+2)^2=0
⇔x=1;y=3/2;z=−2
e: Ta có: x^2−6x+y2+4y+2=0
⇔x^2−6x+9+y^2+4y+4−11=0
⇔(x−3)^2+(y+2)^2=11
Dấu '=' xảy ra khi x=3 và y=-2
\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)
\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11
e: Ta có: \(x^2-6x+y^2+4y+2=0\)
\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
Dấu '=' xảy ra khi x=3 và y=-2
a, \(A=-\left(x^2+8x+16-16\right)+5=-\left(x+4\right)^2+21\le21\forall x\)
Dấu ''='' xảy ra khi x = - 4
Vậy GTLN của A là 21 tại x = -4
b, \(B=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\)
\(=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\forall x;y\)
Dấu ''='' xảy ra khi x = 1 ; y = -1/2
Vậy GTLN của B là 7 tại x = 1 ; y = -1/2
1: \(x^2-x-y^2-y\)
\(=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
2: \(x^2-y^2+x-y\)
\(=\left(x^2-y^2\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+1\right)\)
3: \(3x-3y+x^2-y^2\)
\(=\left(3x-3y\right)+\left(x^2-y^2\right)\)
\(=3\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y+3\right)\)
4: \(5x-5y+x^2-y^2\)
\(=\left(5x-5y\right)+\left(x^2-y^2\right)\)
\(=5\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(5+x+y\right)\)
5: \(x^2-5x-y^2-5y\)
\(=\left(x^2-y^2\right)-\left(5x+5y\right)\)
\(=\left(x-y\right)\left(x+y\right)-5\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-5\right)\)
6: \(x^2-y^2+2x-2y\)
\(=\left(x^2-y^2\right)+\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x+y\right)+2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+2\right)\)
7: \(x^2-4y^2+x+2y\)
\(=\left(x^2-4y^2\right)+\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y\right)+\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y+1\right)\)
8: \(x^2-y^2-2x-2y\)
\(=\left(x^2-y^2\right)-\left(2x+2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-2\right)\)
9: \(x^2-4y^2+2x+4y\)
\(=\left(x^2-4y^2\right)+\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)+2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y+2\right)\)
c)Ta có: x2 + y2 – 2x + 4y + 5 = (x2 – 2x + 1) + (y2 + 4y + 4)
= (x – 1)2 + (y + 2)2
Vậy (x – 1)2 + (y + 2)2 = 0 ⇒ x – 1 = 0 hay y + 2 = 0
⇒ x = 1 hoặc y = -2
a) x2 + y2 + 2x - 4y + 5 = 0
<=> ( x2 + 2x +1 ) + ( y2 - 4y + 4 ) = 0
<=> ( x + 1 )2 + ( y - 2 ) 2 = 0
<=> \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x+1=0\\y-2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
b) x2 + 4y2 - x + 4y + \(\frac{5}{4}\)=0
<=> ( x2 - 2x + \(\frac{1}{4}\)) + ( 4y2 + 4y + 1 ) = 0
<=> ( x - \(\frac{1}{2}\))2 + ( 2y + 1 )2 = 0
<=> \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(2y+1\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\2y+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{2}\\2y=-1\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{-1}{2}\end{cases}}\)