Cho x-y=5 & x^2+y^2=15.
Tính M = x^3-y^3.
Bạn nào có câu trả lời sớm nhất trong hôm nay mk sẽ tick cho.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x + y = 3
=> (x + y)2 = 9
<=> x2 + y2 + 2xy = 9
<=> 2xy = 4
<=> xy = 2
Khi đó x3 + y3 = (x + y)(x2 - xy + y2) = 3.(5 - 2) = 9
b) Ta có x - y = 5
<=> (x - y)2 = 25
<=> x2 - 2xy + y2 = 25
<=> -2xy = 10
<=> xy = -5
Khi đó x3 - y3 = (x - y)(x2 - xy + y2) = 5.(15 + 5) = 100
Ta đặt \(A=\left(x-y\right)^5+\left(y-z\right)^5+\left(z-x\right)^5\) . Ta sẽ phân tích A thành nhân tử:
\(A=\left(x-y+y-z\right)\left[\left(x-y\right)^4-\left(x-y\right)^3\left(y-z\right)+...-\left(x-y\right)\left(y-z\right)^3+\left(y-z\right)^4\right]\)+ \(\left(z-x\right)^5\)
\(A=\left(x-z\right)\left[\left(x-y\right)^4-\left(x-y\right)^3\left(y-z\right)+...-\left(x-y\right)\left(y-z\right)^3+\left(y-z\right)^4\right]\)+ \(\left(z-x\right)^5\)
\(A=\left(x-z\right)\left[\left(x-y\right)^4-\left(x-y\right)^3\left(y-z\right)+...-\left(x-y\right)\left(y-z\right)^3+\left(y-z\right)^4-\left(z-x\right)^4\right]\)
\(A=\left(x-z\right).B\)
Ta phân tích \(\left(y-z\right)^4-\left(z-x\right)^4=\left[\left(y-z\right)^2+\left(z-x\right)^2\right]\left(x+y-2z\right)\left(y-x\right)\)
và \(\left(x-y\right)^4-\left(x-y\right)^3\left(y-z\right)+...-\left(x-y\right)\left(y-z\right)^3\)
\(=\left(x-y\right)\left[\left(x-y\right)^3-\left(x-y\right)^2\left(y-z\right)+\left(x-y\right)\left(y-z\right)^2-\left(y-z\right)^3\right]\)
Đặt \(C=\left(x-y\right)^3-\left(x-y\right)^2\left(y-z\right)+\left(x-y\right)\left(y-z\right)^2-\left(y-z\right)^3\)
\(D=\left[\left(y-z\right)^2+\left(z-x\right)^2\right]\left(x-z+y-z\right)\)
\(=\left(x-z\right)\left(y-z\right)^2+\left(y-z\right)^3-\left(z-x\right)^3+\left(y-z\right)\left(z-x\right)^2\)
\(C-D=\left(y-z\right)\left[-\left(x-y\right)^2-3\left(y-z\right)^2-\left(z-x\right)^2-\left(x-y\right)^2+\left(x-y\right)\left(z-x\right)-\left(z-x\right)^2\right]\)
\(=\left(y-z\right)\left[5\left(-x^2+xy-y^2-z^2+yz+zx\right)\right]\)
Vậy \(A=5\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Vậy \(A=\left(x-z\right)\left(x-y\right)\left(y-z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
nên chia hết cho \(5\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
a. ta có : \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\times\left(-6\right)=13\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3\times\left(-6\right)\times1=19\)
\(x^5+y^5=\left(x+y\right)\left[x^4-x^3y+x^2y^2-xy^3+y^4\right]\)
\(=\left(x+y\right)\left[\left(x^2+y^2\right)^2-x^2y^2-xy\left(x^2+y^2\right)\right]=1.\left(13^2-\left(-6\right)^2-\left(-6\right).13\right)=211\)
b.\(x^2+y^2=\left(x-y\right)^2+2xy=1+2\times6=13\)
\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+6.3.1=19\)
\(x^5-y^5=\left(x-y\right)\left[\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\right]\)
\(=\left(x-y\right)\left[\left(x^2+y^2\right)^2-x^2y^2+xy\left(x^2+y^2\right)\right]=1.\left(13^2-6^2+6.13\right)=211\)
Đặt \(x-y=a;y-z=b;\Rightarrow z-x=-b-a\)
\(\Rightarrow\left(x-y\right)^5+\left(y-z\right)^5+\left(z-x\right)^5=a^5+b^5+\left(-a-b\right)^5\)
\(=\left(a^5+b^5\right)+\left(-a^5-5a^4b-10a^3b^2-10a^2b^3-5ab^4-b^5\right)\)
\(=-5a^4b-10a^3b^2-10a^2b^3-5ab^4\)
\(=-5ab\left(a^3+2a^2b+2ab^2+b^3\right)\)
\(=-5ab\left[\left(a+b\right)\left(a^2-ab+b^2\right)+2ab\left(a+b\right)\right]\)
\(=-5ab\left(a+b\right)\left(a^2+ab+b^2+a+b\right)⋮-5ab\left(-a-b\right)\)
Hay \(\left(x-y\right)^5+\left(y-z\right)^5+\left(z-x\right)^5⋮5\left(x-y\right)\left(y-z\right)\left(z-x\right)\)(đpcm)
Viết số -5 thành tích của hai số nguyên theo tất cả các cách, ta có: -5 = l.(-5)=(-5).l = (-l).5 = 5.(-l).
Từ đó ta tìm được x,y thỏa mãn điều kiện đề bài.
a) Các cặp số (x ; y) tìm được là: (1;-5),(-5; 1), (-1;5),(5; -1)
b) Dựa vào câu a và kết hợp điều kiện x > y, ta tìm được các cặp số (x;y) sau: (5;-l),(l;-5).
c) Làm tương tự câu a, ta tìm được x + 1 và y - 2. Từ đó suy ra (x;y) là (0;-3), (-6; 3), (-2; 7), (4; 1).
Viết số -5 thành tích của hai số nguyên theo tất cả các cách, ta có:
-5 = l.(-5)=(-5).l = (-l).5 = 5.(-l). Từ đó ta tìm được x,y thỏa mãn điều kiện đề bài.
a) Các cặp số (x ; y) tìm được là: (1;-5),(-5; 1), (-1;5),(5; -1)
b) Dựa vào câu a và kết hợp điều kiện x > y, ta tìm được các cặp số (x;y) sau: (5;-l),(l;-5).
c) Làm tương tự câu a, ta tìm được x + 1 và y - 2. Từ đó suy ra (x;y) là (0;-3), (-6; 3), (-2; 7), (4; 1).
Viết số -5 thành tích của hai số nguyên theo tất cả các cách, ta có: -5 = l.(-5)=(-5).l = (-l).5 = 5.(-l). Từ đó ta tìm được x,y thỏa mãn điều kiện đề bài. a) Các cặp số (x ; y) tìm được là: (1;-5),(-5; 1), (-1;5),(5; -1) b) Dựa vào câu a và kết hợp điều kiện x > y, ta tìm được các cặp số (x;y) sau: (5;-l),(l;-5). c) Làm tương tự câu a, ta tìm được x + 1 và y - 2. Từ đó suy ra (x;y) là (0;-3), (-6; 3), (-2; 7), (4; 1)
\(x-y=5\Leftrightarrow\left(x-y\right)^2=25\)
\(\Leftrightarrow x^2-2xy+y^2=25\)
\(\Leftrightarrow15-2xy=25\)
\(\Leftrightarrow2xy=-10\)
\(\Leftrightarrow xy=-5\)
Từ đó : \(M=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=5\cdot\left(15-5\right)=50\)
Vậy....
Thks nha.