Bài 1: Viết các biểu thức dưới dạng tích ( cho x ≥ 0)
1) x2 - 9 ; 2) 9x2 - 16 ; 3) x2-5 ; 4) x - 9; 5) x- 3; 6) x + \(2\sqrt{x}+1\); 7) \(x-4\sqrt{x}+4\); 8) \(4x+4\sqrt{x}+1\); 9) \(x+2\sqrt{x}-35\)
Mọi người giúp em mk với ak, cảm ơn.....!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài không chính xác, biểu thức này không viết được dưới dạnh tích
2:
-8x^6-12x^4y-6x^2y^2-y^3
=-(8x^6+12x^4y+6x^2y^2+y^3)
=-(2x^2+y)^3
3:
=(1/3)^2-(2x-y)^2
=(1/3-2x+y)(1/3+2x-y)
\(1,\\ a,=\left(x+2\right)\left(x^2-2x+4\right)\\ b,=\left(x-4\right)\left(x^2+8x+16\right)\\ c,=\left(3x+1\right)\left(9x^2-3x+1\right)\\ d,=\left(4m-3\right)\left(16m^2+12m+9\right)\\ 2,\\ a,=x^3+125\\ b,=1-x^3\\ c,=y^3+27t^3\)
a)
\(=\left(x+2\right)\left(x^2-2x+4\right)\)
b)
\(=\left(x-4\right)\left(x^2+4x+16\right)\)
c)=\(\left(3x+1\right)\left(9x^2-3x+1\right)\)
d)
=\(\left(4m-3\right)\left(16m^2+12m+9\right)\)
a) \(=\left(x-2\right)^2\)
b) \(=\left(3x-2\right)^2\)
c) \(=\left(x-3y\right)^2\)
d) \(=\left(\dfrac{x}{2}+1\right)^2\)
e) \(=\left(x-4\right)^2\)
f) \(=\left(\dfrac{1}{2}xy^2+1\right)^2\)
g) \(=\left(x-1\right)\left(x+1\right)\)
h) \(=\left(5x-4\right)\left(5x+4\right)\)
a) \(x^2+4x+4\)
\(=x^2+2\cdot2\cdot x+2^2\)
\(=\left(x+2\right)^2\)
b) \(4x^2-4x+1\)
\(=\left(2x\right)^2-2\cdot2x\cdot1+1^2\)
\(=\left(2x-1\right)^2\)
c) \(x^2-x+\dfrac{1}{4}\)
\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\left(\dfrac{1}{2}\right)^2\)
\(=\left(x-\dfrac{1}{2}\right)^2\)
d) \(4\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=\left[2\left(x+y\right)\right]^2-2\cdot2\left(x+y\right)\cdot1+1^2\)
\(=\left[2\left(x+y\right)-1\right]^2\)
\(=\left(2x+2y-1\right)^2\)
Tích mình đi
Ai tích sẽ có lợi
vì khi có lợi bạn sẽ được người khác tích lại.
THANKS
a)x2-6x+9
=x2-2.x.3+32
=(x-3)2
b)4x2+4x+1
=(2x)2+2.2x.1+12
=(2x+1)2
c)4x2+12xy+9y2
=(2x)2+2.2x.3y+(3y)2
=(2x+3y)2
d)4x4-4x2+4
=(2x2)2-2.2x2.2+22
=(2x2-2)2
Ta có hằng đẳng thức:
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Ta thấy \(\left(x-1\right)+\left(x-2\right)+\left(3-2x\right)=0\)
do đó \(\left(x-1\right)^3+\left(x-2\right)^3+\left(3-2x\right)^3=3\left(x-1\right)\left(x-2\right)\left(3-2x\right)\)
suy ra \(\left(x-1\right)\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x_1=1\\x_2=2\\x_3=\frac{3}{2}\end{cases}}\)
\(S=\frac{29}{4}\).
)1) \(x^2-9=x^2-3^2=\left(x-3\right)\left(x+3\right)\)
2) \(9x^2-16=\left(3x\right)^2-4^2=\left(3x-4\right)\left(3x+4\right)\)
3) \(x^2-5=x^2-\left(\sqrt{5}\right)^2=\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)
4) \(x-9=\left(\sqrt{x}\right)^2-3^2=\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\)(ĐK: \(x\ge0\))
5) \(x-3=\left(\sqrt{x}\right)^2-\left(\sqrt{3}\right)^2=\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{x}+\sqrt{3}\right)\)(ĐK: nt)
6) \(x+2\sqrt{x}+1=\left(\sqrt{x}\right)^2+2\cdot\sqrt{x}\cdot1+1=\left(\sqrt{x}+1\right)^2\)(ĐK: nt)
7) \(x-4\sqrt{x}+4=\left(\sqrt{x}\right)^2-2\cdot\sqrt{x}\cdot2+2^2=\left(\sqrt{x}-2\right)^2\)(ĐK: nt)
8) \(4x+4\sqrt{x}+1=\left(2\sqrt{x}\right)^2+2\cdot2\sqrt{x}\cdot1+1=\left(2\sqrt{x}+1\right)^2\)(ĐK:nt
9)
\(x+2\sqrt{x}-35\\ =x-5\sqrt{x}+7\sqrt{x}-35\\ =\sqrt{x}\left(\sqrt{x}-5\right)+7\left(\sqrt{x}-5\right)\\=\left(\sqrt{x}-5\right)\left(\sqrt{x}+7\right)\)(ĐK: nt)