K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(ĐKXĐ:x\ne0,x-\dfrac{1}{x}\ge0\)

Chia cả hai vế của phương trình đầu cho \(x\ne0\) ta có :

\(x+2\sqrt{x-\dfrac{1}{x}}=3+\dfrac{1}{x}\)

\(\Leftrightarrow x-\dfrac{1}{x}+2\sqrt{x-\dfrac{1}{x}}-3=0\)

Đặt \(\sqrt{x-\dfrac{1}{x}}=a\left(a\ge0\right)\)

Khi đó pt có dạng : \(a^2+2a-3=0\Leftrightarrow\left(a+3\right)\left(a-1\right)=0\)

\(\Leftrightarrow a=1\) ( do \(a\ge0\) )

\(\Rightarrow\sqrt{x-\dfrac{1}{x}}=1\Rightarrow x-\dfrac{1}{x}=1\)

\(\Leftrightarrow x=\dfrac{1\pm\sqrt{5}}{2}\) ( thỏa mãn ĐKXĐ )

NV
11 tháng 12 2021

Đặt \(\sqrt{x^2-3x+2}=t\ge0\)

\(\Rightarrow log_3\left(t+2\right)+5^{t^2-1}-2=0\)

Nhận thấy \(t=1\) là 1 nghiệm của pt

Xét hàm \(f\left(t\right)=log_3\left(t+2\right)+5^{t^2-1}-2\)

\(f'\left(t\right)=\dfrac{1}{\left(t+2\right)ln3}+2t.5^{t^2-1}.ln5>0\) ; \(\forall t\ge0\)

\(\Rightarrow f\left(t\right)\) đồng biến \(\Rightarrow f\left(t\right)\) có tối đa 1 nghiệm

\(\Rightarrow t=1\) là nghiệm duy nhất

\(\Rightarrow\sqrt{x^2-3x+2}=1\)

\(\Rightarrow...\)

13 tháng 8 2019

\(\sqrt[3]{x+1}+\sqrt[3]{x+2}=1+\sqrt[3]{x^2+3x+2}\)

\(\Rightarrow\sqrt[3]{x+1}+\sqrt[3]{x+2}=1+\sqrt[3]{\left(x+1\right)\left(x+2\right)}\)

\(\Rightarrow\sqrt[3]{x+1}-1-\sqrt[3]{x+1}.\sqrt[3]{x+2}+\sqrt[3]{x+2}=0\)

\(\Rightarrow\left(\sqrt[3]{x+1}-1\right)-\sqrt[3]{x+2}\left(\sqrt[3]{x+1}-1\right)=0\)

\(\Rightarrow\left(\sqrt[3]{x+1}-1\right)\left(1-\sqrt[3]{x+2}\right)=0\)

Th1 : \(\sqrt[3]{x+1}-1=0\Rightarrow\sqrt[3]{x+1}=1\)

\(\Rightarrow x+1=1\Rightarrow x=0\)

Th2 : \(\sqrt[3]{x+2}-1=0\Rightarrow\sqrt[3]{x+2}=1\)

\(\Rightarrow x+2=1\Rightarrow x=-1\)

Vậy \(x\in\left\{0;-1\right\}\)

NV
12 tháng 12 2021

Cách 1:

GPT :\(5\sqrt{x-1}-\sqrt{x+7}=3x-4\) - Hoc24

Cách 2:

Đặt \(\left\{{}\begin{matrix}\sqrt{25x-25}=a\\\sqrt{x+7}=b\end{matrix}\right.\)  \(\Rightarrow3x-4=\dfrac{a^2-b^2}{8}\)

Pt trở thành:

\(a-b=\dfrac{a^2-b^2}{8}\)

\(\Leftrightarrow\left(a-b\right)\left(a+b-8\right)=0\)

\(\Leftrightarrow...\)

7 tháng 7 2016

\(3x^2+x+1=\left(3x+1\right)\sqrt{x^2+1}\) (ĐKXĐ : \(x>-\frac{1}{3}\) )

\(\Leftrightarrow3x^2-2x=\left(3x+1\right)\sqrt{x^2+1}-\left(3x+1\right)\)

\(\Leftrightarrow3x^2-2x=\left(3x+1\right)\left(\sqrt{x^2+1}-1\right)\)

\(\Leftrightarrow x\left(3x-2\right)=\left(3x+1\right)\left(\frac{x^2+1-1}{\sqrt{x^2+1}+1}\right)\)

\(\Leftrightarrow x\left(3x-2\right)=x\left(3x+1\right)\left(\frac{1}{\sqrt{x^2+1}+1}\right)\)

\(\Leftrightarrow x\left(3x-2-\frac{3x+1}{\sqrt{x^2+1}+1}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x-2-\frac{3x+1}{\sqrt{x^2+1}+1}=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x\approx1,2818\end{cases}}\)

Thử lại, ta có x = 0 thoả mãn nghiệm phương trình.

7 tháng 7 2016

Dòng thứ 5 từ trên xuống hình như nhầm thì phải

4 tháng 9 2019

a) Điều kiện $x \ge -5$. Đặt $\sqrt{x+5}=a$ thì $x=a^2-5$. Thay vào ta có $$\begin{array}{l} (a^2-5)^2-7(a^2-5)=6a-30 \\ \Leftrightarrow a^4-17a^2-6a+90=0 \Leftrightarrow (a^2+6a+10)(a-3)^2=0 \end{array}$$

Vậy $a=3 \Leftrightarrow \boxed{ x= 4}$.

29 tháng 1 2016

ai giải hộ cái

11 tháng 4 2023

\(\left(x^2-3x+2\right)\sqrt{\dfrac{x+3}{x-1}}=-\dfrac{1}{2}x^3+\dfrac{15}{2}x-11\left(1\right)\)

Đk: \(\sqrt{\dfrac{x+3}{x-1}}\ge0\Leftrightarrow\left[{}\begin{matrix}x>1\\x\le-3\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow-2\left(x-1\right)\left(x-2\right)\sqrt{\dfrac{x+3}{x-1}}=x^3-15x+22\)

\(\Rightarrow-2\sqrt{\left(x-1\right)\left(x+3\right)}.\left(x-2\right)=\left(x-2\right)\left(x^2+2x-11\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\-2\sqrt{\left(x-1\right)\left(x+3\right)}=x^2+2x-11\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow-2\sqrt{x^2+2x-3}=\left(x^2+2x-3\right)-8\)

Đặt \(a=\sqrt{x^2+2x-3}\left(a\ge0\right)\). Từ phương trình (2) suy ra:

\(a^2+2a-8=0\Leftrightarrow\left[{}\begin{matrix}a=2\left(nhận\right)\\a=-4\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+2x-3}=2\Leftrightarrow x^2+2x-7=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1+2\sqrt{2}\left(nhận\right)\\x=-1-2\sqrt{2}\left(nhận\right)\end{matrix}\right.\)

Thử lại ta có \(x=2\) và \(x=-1+2\sqrt{2}\) là 2 nghiệm của phương trình (1).

\(\Leftrightarrow2\left(x^2-3x+2\right)\cdot\sqrt{\dfrac{x+3}{x-1}}=-x^3+15x-22\)

\(\Leftrightarrow2\left(x-2\right)\left(x-1\right)\cdot\dfrac{\sqrt{\left(x+3\right)\left(x-1\right)}}{x-1}=-x^3+2x^2-2x^2+4x+11x-22\)

\(\Leftrightarrow2\left(x-2\right)\sqrt{\left(x+3\right)\left(x-1\right)}=\left(x-2\right)\left(-x^2-2x+11\right)\)

\(\Leftrightarrow\left(x-2\right)\left(\sqrt{4\left(x^2+2x-3\right)}+x^2+2x-11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\left(1\right)\\2\sqrt{x^2+2x-3}+x^2+2x-11=0\left(2\right)\end{matrix}\right.\)

(1) =>x=2

(2): Đặt \(\sqrt{x^2+2x-3}=a\left(a>=0\right)\)

=>2a+a^2-8=0

=>(a+4)(a-2)=0

=>a=2

=>x^2+2x-3=4

=>x^2+2x-7=0

=>\(x=-1\pm2\sqrt{2}\)